Refine Your Search

Topic

Author

Search Results

Journal Article

Mode-Dynamic Task Allocation and Scheduling for an Engine Management Real-Time System Using a Multicore Microcontroller

2014-04-01
2014-01-0257
A variety of methodologies to use embedded multicore controllers efficiently has been discussed in the last years. Several assumptions are usually made in the automotive domain, such as static assignment of tasks to the cores. This paper shows an approach for efficient task allocation depending on different system modes. An engine management system (EMS) is used as application example, and the performance improvement compared to static allocation is assessed. The paper is structured as follows: First the control algorithms for the EMS will be classified according to operating modes. The classified algorithms will be allocated to the cores, depending on the operating mode. We identify mode transition points, allowing a reliable switch without neglecting timing requirements. As a next step, it will be shown that a load distribution by mode-dependent task allocation would be better balanced than a static task allocation.
Journal Article

Development of Virtual Road Wheel Input Forces for Belgian Ground

2014-04-01
2014-01-0381
Numerical durability analysis is the only approach that can be used to assess the durability of vehicles in early stages of development. In these stages, where there are no physical prototypes available, the road wheel forces (or spindle forces) for durability testing on Belgian PG (Proving Ground) must be predicted by VPG (Virtual Proving Ground) or derived from the measured forces of predecessor vehicles. In addition, the tuning parts and geometry are not fixed at these stages. This results in the variation of spindle forces during the development stages. Therefore, it is not reasonable to choose the forces predicted at a specific tuning condition as standard forces. It is more reasonable to determine the standard forces stochastically using the DB of the measured forces of predecessor vehicles. The spindle forces measured or predicted on Belgian PG are typically stationary random.
Technical Paper

Development of the Active Sound Generation Technology Using Motor Driven Power Steering System

2020-09-30
2020-01-1536
As the original engine sound is usually not enough to satisfy the driver’s desire for a sporty and fascinating sound, Active Noise Control (ANC) and Active Sound Design (ASD) have been great technologies in automobiles for a long time. However, these technologies which enhance the sound of vehicles using loud speakers or electromagnetic actuators etc. lead to the increase of cost and weight due to the use of external amplifiers or actuators. This paper presents a new technology for generating a target sound by the active control of a permanent magnet synchronous motor (PMSM) of a mass-production steering system. The existing steering hardware or motor is not changed, but only additional software is added. Firstly, an algorithm of this technology, called Active Sound Generation (ASG), is introduced which is compiled and included in the ECU target code. Then the high frequency noise issue and its countermeasures are presented.
Journal Article

A Study on North American Customer Preference to Interior Noise using Sound Balance Analysis

2014-04-01
2014-01-0023
A new approach to achieve better customer perception of overall vehicle quietness is the sound balance improvement of vehicle interior sound during driving. Interior sound is classified into 3 primary sound source shares such as engine sound relative to revolution speed, tire road noise and wind noise relative to vehicle speed. Each interior sound shares are classified using the synchronous time-domain averaging method. The sound related to revolution order of engine and auxiliaries is considered as engine sound share, tire road noise and wind noise shares are extracted by multiple coherent output power analysis. Sound balance analysis focuses on improving the relative difference in interior sound share level between the 3 primary sound sources. Virtual sound simulator which is able to represent various driving conditions and able to adjust imaginary sound share is built for several vehicles in same compact segment.
Technical Paper

Design of A Light Weight Suspension Component Using CAE

1998-02-23
980901
In this paper, a design procedure for the optimized light weight front cross member, which is a sub frame of the car chassis, without sacrificing basic functional requirements is presented. As the first step, optimal structural integrity was calculated and extracted using a CAE technique with the available volume constraint of the package layout. Quantitative design loads for the cross member was achieved by measurement. Dynamic load analysis using ADAMS was also performed to determine the loads. Later, these calculated loads were applied to the FEM stress analysis of the cross member. Furthermore, durability analysis was also performed using load profile database measured from ‘Hyundai Motor Co. Proving Ground’. Four constant amplitude durability tests and two static tests were performed on the cross member prototypes to confirm design reliability.
Technical Paper

Invisible PAB Door Development Using Two-shot Molding

2010-04-12
2010-01-0684
Invisible Passenger-side Airbag (IPAB) door system must be designed with a weakened area such that the airbag will break through the Instrument Panel (IP) in the intended manner, with no flying debris at any temperature. At the same time, there must be no cracking or sharp edges at the head impact test (ECE 21.01). Needless to say, Head impact test must keep pace with the deployment test. In this paper, we suggested soft airbag door system that is integrally molded with a hard instrument panel by using Two-shot molding. First of all, we set up the design parameters of IPAB door for the optimal deployment and head impact performance by CAE analysis. And then we optimized the open-close time at each gate of the mold so that the soft and hard material could be integrally molded with the intended boundary. We could make the boundary of two materials more constant by controlling the open-close time of each gate with resin temperature sensor.
Technical Paper

Characteristic Evaluation and Improvement of Suspension Rattle Noise

2010-04-12
2010-01-1141
The purpose of this paper is to identify and reduce the suspension rattle noise. First, the characteristics of the rattle noise are analyzed experimentally in the time and frequency domain. It was found that the rattle noise and vibration at shock absorber mounting point are strongly correlated. Second, the sensitivity analysis of design parameters is performed using a half car model in ADAMS. The result of the simulation model is verified by comparison with test. Finally, the influence of design parameters for the rattle noise is investigated. The study shows that the shock absorber mounting bushing is the most sensitive parameter to affect the suspension rattle noise. This paper shows how the suspension rattle noise can be improved.
Technical Paper

Aeroacoustics Predictions of Automotive HVAC Systems

2010-04-12
2010-01-0415
Acoustics comfort is a key point for the ground transportation market and in particular in the automotive area. A significant contributor to the noise levels in the cabin in the range 200Hz to 3000Hz is the HVAC (Heating, Ventilating, and Air Conditioning) system, consisting of sub-systems such as the air intake duct, thermal mixing unit, blower, ducts, and outlet vents. The noise produced by an HVAC system is mainly due to aeroacoustics mechanisms related to the flow fluctuations induced by the blower rotation. The structure borne noise related to the surface induced vibrations and to the noise transmission through the dash or plastic panels may also contribute but is not considered in this study. This study presents a digital approach for HVAC aeroacoustics noise predictions related to the ducts and outlet vents. In order to validate the numerical method flow and acoustics measurements are performed on production HVAC systems placed in an anechoic room.
Technical Paper

Invisible Advanced Passenger-Side Airbag Door Design for Optimal Deployment and Head Impact Performance

2004-03-08
2004-01-0850
Hard panel types of invisible passenger-side airbag (IPAB) door system must be designed with a weakened area such that the airbag will deploy through the Instrument Panel (IP) in the intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test (ECE 21.01). If the advanced-airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of IPAB door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. We introduced the ‘Operating Window’ idea from quality engineering to design the hard panel types of IPAB door applied to the advanced-airbag for optimal deployment and head impact performance. To accurately predict impact performance, it is important to characterize the strain rate.
Technical Paper

Three-way catalysts for partial lean-burn engine vehicle

2000-06-12
2000-05-0322
Emission of carbon dioxide from mobile sources seriously concerned to solve greenhouse effect and high price of gasoline in some countries have resulted in the development of lean-burn concept engine. In spite of many studies on the lean deNOx catalyst, we have no clear solution to obtain high fuel economy and high efficiency of NOx conversion in lean-burn application. This paper describes applicability and problems of NOx adsorber system to partial lean-burn vehicle, the development of three-way catalyst with improvement of washcoat technology based on three-way catalyst used for gasoline application, and comparison test results of evaluations is synthesized gas activity test, Federal Test Procedure (FTP) test, etc. This study shows improved three-way catalysts in partial lean- burn vehicle have max. 89% of NOx conversion in FTP without adding rich spike and regeneration functions to engine management system.
Technical Paper

Powertrain-related vehicle sound development

2000-06-12
2000-05-0301
This paper reflects an efficient and comprehensive approach for vehicle sound optimization integrated into the entire development process. It shows the benefits of early consideration of typical vehicle NVH features and of intensive interaction of P/T and vehicle responsibilities. The process presented here considers the typical restriction that acoustically representative prototypes of engines and vehicles are not available simultaneously at the early development phase. For process optimization at this stage, a method for vehicle interior noise estimation is developed, which bases on measurements from the P/T test bench only, while the vehicle transfer behavior for airborne and structure-borne noise is assumed to be similar to a favorable existing vehicle. This method enables to start with the pre- optimization of the pure P/T and its components by focusing on such approaches which are mainly relevant for the vehicle interior noise.
Technical Paper

Analysis of structure-borne noise and structural dynamic modification

2000-06-12
2000-05-0300
Faced with the challenge to improve vehicle quality and reduce the development cycle for new product, experimental and/or analytical approach have been used to assure improvements in vehicle NVH performance. Prediction of dynamic characteristics is the most important factor to shorten development time. In order to predict car interior noise at the pre-design stage, a total vehicle without chassis parts and its cavity are fully modeled by finite elements. To reduce FE model generation time and get more effective design modification index, hybrid model combining FE data and experimental data is used. In this paper, the hybrid modeling based on FBS technique is used for identifying substructure contribution and modification. Driving force is also acquired by powertrain test. To verify this model, a passenger car is tested and compared with analysis data.
Technical Paper

Development of Composite Body Panels for a Lightweight Vehicle

2001-03-05
2001-01-0102
Recently weight reduction is increasingly needed in automotive industry to improve fuel efficiency and to meet a CO2 emission requirement. In this paper, we prepared composite body panels for the lightweight vehicle based on a small passenger car. Fender, roof, door, side outer panel, and tailgate are made from hand layup using a glass/carbon hybrid reinforcement. Hood is made from low pressure sheet molding compound (SMC) to investigate feasibility of mass production. Both hand layup and low pressure SMC materials are newly developed and their physical properties are examined. CAE simulation was done for strength analysis and optimization of thickness for the body panels.
Technical Paper

Modeling of Pulse Width Modulation Pressure Control System for Automatic Transmission

2002-03-04
2002-01-1257
Generally, the widely used hydraulic control system in automatic transmissions is pulse width modulation (PWM) type. It consists in a PWM solenoid valve and a reducing type second stage valve, so called pressure control valve (PCV), to amplify pressure or flow rate. In this study, the mathematical models of the PWM solenoid valve and the PCV with moderate complexity are proposed. Then, their behavior is analyzed from the steady state characteristics. Finally, we find that there are good matches between the dynamic simulation results and the experimental data.
Technical Paper

Hyundai Santa Fe FCV Powered by Hydrogen Fuel Cell Power Plant Operating Near Ambient Pressure

2002-03-04
2002-01-0093
Hyundai Motor Company has developed hydrogen fuel cell vehicles (FCV) based on its SUV, Santa Fe. As the hydrogen fuel cell power plant runs at near ambient pressure, parasitic loss due to its operation is fully minimized and the noise level of the air supply subsystem is extremely low. The Santa Fe FCV has been built to feature roomy passenger space and cargo capacity identical to that of a standard, gasoline-powered Santa Fe, because of its compact fuel cell power plant. In addition, lightweight aluminum body-components help to keep a power-to-weight ratio similar to that of a conventional SUV. Hyundai Motor Company, as a full member of California Fuel Cell Partnership, is now operating the Santa Fe FCV's on real roads in California. In this paper, the configuration and performance test results of the Santa Fe FCV will be described.
Technical Paper

The Effects of Various Design Factors for Invisible Passenger-side Airbag Door Opening

2002-03-04
2002-01-0184
Invisible Passenger-side Airbag (IPAB) door systems must be designed with a weakened area such that the airbag will break through the Instrument Panel (IP) in the intended manner, with no flying debris at any temperature. A predictive Finite Element Analysis (FEA) was carried out to calculate the effects of varying design factors (the length and thickness of kink-hinge, tear-line type and temperature) on the IPAB-door opening. The impact performance of plastic parts was considered, because the mechanical properties of thermoplastic materials are strongly dependent on strain rate.
Technical Paper

The Root Cause Analysis of Steel Fuel Tank Cracking at a Fatigue Point and Test Method Development of Durability

2017-03-28
2017-01-0393
Fuel tank in vehicle must hold the fuel in a stable way under any driving condition. However, the fuel tank might not conserve the fuel firmly in case a crack emerged while the fuel tank is exposed to different driving condition. Basically, when the engine is in purging at a normal ambient temperature before fuel boiling, the pressure inside the fuel tank decreases. However, the pressure inside a fuel tank increases while a vehicle is driven at extreme hot ambient temperature as fuel is boiling. This repetitive pressure change in the fuel tank comes with fuel tank’s physical expansion and shrink, which would cause a damage to the fuel tank. The main purpose of this research is to investigate the root cause of why fuel tank cracks at a fatigue point. We also aim to set up the method of how to test durability of the fuel tank in association with the pressure inside the tank.
Technical Paper

Analysis of Vehicle Voice Recognition Performance in Response to Background Noise and Gender Based Frequency

2017-06-05
2017-01-1888
Voice Recognition (VR) systems have become an integral part of the infotainment systems in the current automotive industry. However, its recognition rate is impacted by external factors such as vehicle cabin noise, road noise, and internal factors which are a function of the voice engine in the system itself. This paper analyzes the VR performance under the effect of two external factors, vehicle cabin noise and the speakers’ speech patterns based on gender. It also compares performance of mid-level sedans from different manufacturers.
Technical Paper

Analysis of Rear Brake Grinding Noise by Rear Suspension Types

2017-09-17
2017-01-2486
Brake grinding noise is caused by the friction of the disc and pads. The friction generates vibration and it transmits to the body via the chassis system. We called it structure-borne noise. To improve the noise in the vehicle development, the aspects of chassis or body's countermeasure occurs many problems, cost and time. In this reason many brake companies try to make solution with brake system, like brake pad materials or disc surface condition. However the countermeasures of excitation systems also have a lot of risk. It could be occurred side-effects of braking performance, and need to re-verify brake noise like Creep-groan, Groan, Squeal, Judder and so on. For this reason, it is essential to make a robust chassis system in the initial development stage of the vehicle for the most desirable grinding noise-resistant vehicle. This paper is about rear brake grind noise path analysis and countermeasure of chassis system. There are two steps to analysis.
X