Refine Your Search

Topic

Search Results

Journal Article

A Study on North American Customer Preference to Interior Noise using Sound Balance Analysis

2014-04-01
2014-01-0023
A new approach to achieve better customer perception of overall vehicle quietness is the sound balance improvement of vehicle interior sound during driving. Interior sound is classified into 3 primary sound source shares such as engine sound relative to revolution speed, tire road noise and wind noise relative to vehicle speed. Each interior sound shares are classified using the synchronous time-domain averaging method. The sound related to revolution order of engine and auxiliaries is considered as engine sound share, tire road noise and wind noise shares are extracted by multiple coherent output power analysis. Sound balance analysis focuses on improving the relative difference in interior sound share level between the 3 primary sound sources. Virtual sound simulator which is able to represent various driving conditions and able to adjust imaginary sound share is built for several vehicles in same compact segment.
Journal Article

Developing Mode Shift Strategies for a Two-Mode Hybrid Powertrain with Fixed Gears

2008-04-14
2008-01-0307
Two-mode hybrid architectures with three planetary gear sets and four clutches will bring both flexibility and complexity to energy management of powertrains. In order to take full advantage of the increased degrees of freedom, highly delicate operation strategies are needed. We develop transmission efficiency models for power-split modes, and present a mode shift strategy assuming no battery power. When battery load leveling is additionally considered, the respective optimal operation set for each mode can be obtained and compared to yield a mode shift algorithm for general hybrid operation situations. The investigation of the strategies shows how frequently each mode is used, and verifies the effectiveness of fixed gear operations. We check the validity of the strategies by applying the algorithm to dynamic optimization and by predicting how it works during an actual driving simulation.
Technical Paper

Real-Time Powertrain Control Strategy for Series-Parallel Hybrid Electric Vehicles

2007-08-05
2007-01-3472
The series-parallel hybrid electric vehicle(HEV), which employs a planetary gear set to combine one internal combustion engine(ICE) and two electric motors(EMs), can take advantages of both series and parallel hybrid system. The efficient powertrain operating point of the system can be obtained by the instantaneous optimization of equivalent fuel consumption. However, heavy computational requirements and variable constraints of the optimization process make it difficult to build real-time control strategy. To overcome the difficulty, this study suggests the control strategy which divides the optimization process into 2 stages. In the first stage, a target of charge/discharge power is determined based on equivalent fuel consumption, then in the second stage, an engine operating point is determined taking power transfer efficiency into account.
Technical Paper

Model Based Optimization of Supervisory Control Parameters for Hybrid Electric Vehicles

2008-04-14
2008-01-1453
Supervisory control strategy of a hybrid electric vehicle (HEV) provides target powers and operating points of an internal combustion engine and an electric motor. To promise efficient driving of the HEV, it is needed to find the proper values of control parameters which are used in the strategy. However, it is very difficult to find the optimal values of the parameters by doing experimental tests, since there are plural parameters which have dependent relationship between each other. Furthermore variation of the test results makes it difficult to extract the effect of a specific parameter change. In this study, a model based parameter optimization method is introduced. A vehicle simulation model having the most of dynamics related to fuel consumption was developed and validated with various experimental data from real vehicles. And then, the supervisory control logic including the control parameters was connected to the vehicle model.
Technical Paper

Closed-Loop Evaluation of Vehicle Stability Control (VSC) Systems using a Combined Vehicle and Human Driving Model

2004-03-08
2004-01-0763
This paper presents a closed-loop evaluation of the Vehicle Stability Control (VSC) systems using a vehicle simulator. Human driver-VSC interactions have been investigated under realistic operating conditions in the laboratory. Braking control inputs for vehicle stability enhancement have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. A driving simulator which consists of a three-dimensional vehicle dynamic model, interface between human driver and vehicle simulator, three-dimensional animation program and a visual display has been validated using actual vehicle driving test data. Real-time human-in-the loop simulation results in realistic driving situations have shown that the proposed controller reduces driving effort and enhances vehicle stability.
Technical Paper

Combustion System Development in a Small Bore HSDI Diesel Engine for Low Fuel Consuming Car

2001-03-05
2001-01-1257
As CO2 emissions from vehicles is gaining a global attention the low fuel consuming power-train is in much greater demand than before. Some alternatives are suggested but the HSDI diesel engine would be the most realistic solution. Vehicle simulation shows that low fuel consuming car can be realized by applying 1∼1.2L HSDI diesel engine in vehicles weighing about 750kg. While the direct injection diesel engine has been researched for a long time enhancement of mixing between air and fuel in a limited space makes it challenging area to develop a small swept volume HSDI diesel engine. We are investigating small HSDI diesel engine combustion technologies as an effort to realize low fuel consuming vehicle. Our main objective in this study is to have a better understanding of the combustion related parameters from such a small size HSDI diesel engine in order to improve engine performance.
Technical Paper

Development of Composite Body Panels for a Lightweight Vehicle

2001-03-05
2001-01-0102
Recently weight reduction is increasingly needed in automotive industry to improve fuel efficiency and to meet a CO2 emission requirement. In this paper, we prepared composite body panels for the lightweight vehicle based on a small passenger car. Fender, roof, door, side outer panel, and tailgate are made from hand layup using a glass/carbon hybrid reinforcement. Hood is made from low pressure sheet molding compound (SMC) to investigate feasibility of mass production. Both hand layup and low pressure SMC materials are newly developed and their physical properties are examined. CAE simulation was done for strength analysis and optimization of thickness for the body panels.
Technical Paper

Modeling of Pulse Width Modulation Pressure Control System for Automatic Transmission

2002-03-04
2002-01-1257
Generally, the widely used hydraulic control system in automatic transmissions is pulse width modulation (PWM) type. It consists in a PWM solenoid valve and a reducing type second stage valve, so called pressure control valve (PCV), to amplify pressure or flow rate. In this study, the mathematical models of the PWM solenoid valve and the PCV with moderate complexity are proposed. Then, their behavior is analyzed from the steady state characteristics. Finally, we find that there are good matches between the dynamic simulation results and the experimental data.
Technical Paper

Anaerobic Digestion for Reduction and Stabilization of Organic Solid Wastes During Space Missions: Laboratory Studies

2002-07-15
2002-01-2351
The technical feasibility of applying anaerobic digestion for reduction and stabilization of the organic fraction of solid wastes generated during space missions was investigated. This process has the advantages of not requiring oxygen or high temperature and pressure while producing methane, carbon dioxide, nutrients, and compost as valuable products. High-solids leachbed anaerobic digestion employed here involves a solid-phase fermentation with leachate recycle between new and old reactors for inoculation, wetting, and removal of volatile organic acids during startup. After anaerobic conversion is complete, the compost bed may be used for biofiltration and plant growth medium. The nutrient-rich leachate may also be used as a vehicle for nutrient recycle. Physical properties of representative waste feedstocks were determined to evaluate their space requirements and hydraulic leachability in the selected digester design.
Technical Paper

Virtual NOx sensor for Transient Operation in Light-Duty Diesel Engine

2016-04-05
2016-01-0561
Currently, diesel engine-out exhaust NOx emission level prediction is a major challenge for complying with the stricter emission legislation and for control purpose of the after-treatment system. Most of the NOx prediction research is based on the Zeldovich thermal mechanism, which is reasonable from the physical point of view and for its simplicity. Nevertheless, there are some predictable range limitations, such as low temperature with high EGR rate operating conditions or high temperature with low EGR rates. In the present paper, 3 additional considerations, pilot burned gas mixing before the main injection; major NO formation area; concentration correction, were applied to the previously developed real-time NO estimation model based on in-cylinder pressure and data available from ECU. The model improvement was verified on a 1.6 liter EURO5 diesel engine in both steady and transient operation.
Technical Paper

Study on the Effect of Injection Strategies on Particulate Emission Characteristics under Cold Start Using In-cylinder Visualization

2016-04-05
2016-01-0822
Due to the direct injection of fuel into a combustion chamber, particulate emission is a challenge in DISI engines. Specifically, a significant amount of particulate emission is produced under the cold start condition. In this research, the main interest was to investigate particulate emission characteristics under the catalyst heating condition because it is one of the significant particulate-emissionproducing stages under the cold start condition. A single-cylinder optically accessible engine was used to investigate the effect of injection strategies on particulate emission characteristics under the catalyst heating condition. The split injection strategy was applied during intake stroke with various injection pressures and injection timings. Using luminosity analysis of the soot radiation during combustion, the particulate formation characteristics of each injection strategy were studied. Moreover, the factors that affect PM formation were analyzed via fuel injection visualization.
Technical Paper

Evaluation of Time-Resolved Nano-Particle and THC Emissions of Wall-Guided GDI Engine

2011-10-06
2011-28-0022
A nano-sized PM and THC emission characteristics were investigated according to the fuel injection strategy such as a pressure and timing in the GDI engine. On the part-load condition, the particulate emissions exhibited a strong sensitivity to the injection timing. The fuel injection pressure also had a great association with the nano-particles and THC. A size of PM exhausted from the GDI engine located near 10nm on the part-load. In contrast, accumulation mode particles within 60 - 80nm mainly exhausted during the cold transient start phase. Increment of fuel injection pressure positively affected on the nano-particle and THC emissions during the start of the engine, as well.
Technical Paper

A Study of an Active Rear Diffuser Device for Aerodynamic Drag Reduction of Automobiles

2012-04-16
2012-01-0173
The goal of this study is to develop an actively translating rear diffuser device to reduce the aerodynamic drag experienced by passenger cars. The feature of this device is hidden under the rear bumper ordinarily not to ruin the external design of the car and slips out backward under the high-speed driving condition. By this study, a movable arc-shaped semi-diffuser device is designed to maintain the streamlined automobile rear underbody configuration. It's installed under the rear bumper of a passenger car. Seven types of rear diffuser devices whose positions, slid out lengths and widths are differing with the basic shape installed in the rear bumper section of a passenger car and performed Computational Fluid Dynamics (CFD) analyses under rotating wheel and moving ground conditions. The main purpose of this study is that explains the aerodynamic drag reduction mechanism of a passenger car via an actively translating rear diffuser device at a high speed driving condition.
Technical Paper

Hydraulic Simulation and Experimental Analysis of Needle Response and Controlled Injection Rate Shape Characteristics in a Piezo-driven Diesel Injector

2006-04-03
2006-01-1119
The More precise control of the multiple-injection is required in common-rail injection system of direct injection diesel engine to meet the low NOx emission and optimal PM filter system. The main parameter for obtaining the multiple-injections is the mechanism controlling the injector needle energizing and movement. In this study, a piezo-driven diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code and to evaluate the effect of this control capability on spray formation processes. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results.
Technical Paper

Development of Module Based IPS Evaluation System

2006-04-03
2006-01-1569
A module based IPS (Intelligent Power Switch) evaluation system is proposed in this paper. As the IPS is gradually replacing the conventional relay and fuses, the stability and reliability of power system depends more on these IPS. The proposed IPS evaluation system outperforms the conventional manual evaluation in terms of speed and efficiency. This paper will introduce the structure of hardware and software of the IPS evaluation system. The system is placed between the module and cable connector to evaluate the module in an operating car without changing the cables. The control and signal processing is carried out by personal computer which is connected to the evaluation system by USB (Universal Serial Bus). The load resistance can be switch from actual load to arbitrary value using relay circuitry and DC electric load controlled by GPIB (General Purpose Interface Bus). CAN (Controller Area Network) circuits were added to control the IPS mounted inside the module.
Technical Paper

Model Validation of the Chevrolet Volt 2016

2018-04-03
2018-01-0420
Validation of a vehicle simulation model of the Chevrolet Volt 2016 was conducted. The Chevrolet Volt 2016 is equipped with the new “Voltec” extended-range propulsion system introduced into the market in 2016. The second generation Volt powertrain system operates in five modes, including two electric vehicle modes and three extended-range modes. Model development and validation were conducted using the test data performed on the chassis dynamometer set in a thermal chamber of Argonne National Laboratory’s Advanced Powertrain Research Facility. First, the components of the vehicle, such as the engine, motor, battery, wheels, and chassis, were modeled, including thermal aspects based on the test data. For example, engine efficiency changes dependent on the coolant temperature, or chassis heating or air-conditioning operations according to the ambient and cabin temperature, were applied.
Technical Paper

The Wettability of Silicon Carbide by Liquid Pure Aluminum and Aluminum Alloys

1994-03-01
940808
There have been strong moves in recent years to introduce the metal matrix composites concept into higher volume applications, notably the automotive field where large volume production and lower material costs are required. The wettability between reinforcing materials and base material is one of important factors for the strength of composites and its manufacture. The main objective of this paper is to establish a basic understanding of wetting phenomena in SiC/liquid aluminum and aluminum alloy systems. In the present paper, results from the sessile drop method are reported for the effects on the wetting angle, θ, of free silicon in the silicon carbide substrate and of alloying additions of silicon, copper or magnesium to the aluminum drop for the temperature range 700-900 or 1400°C in the titanium-gettered vacuum (1.3 x 10-2 / 1.3 x 10-3 Pa).
Technical Paper

Characterization of High Temperature Properties in Al Matrix Composite Fabricated by the Low Pressure Squeeze Infiltration Process

1994-03-01
940809
Al matrix composites containing alumina (Al2O3) fibers are fabricated by the low pressure (25MPa) squeeze infiltration process which is suitable for the low cost mass production. Mechanical properties at room temperature as well as elevated temperatures (250°C, 350°C) are improved due to the presence of reinforcements. Upto 350°C, composites maintain a reasonable strength, which is much better than strength of the conventional Al alloy. Composites have equivalent wear rates to those of Ni - resist cast iron. Wear behavior is changed with the sliding speed. At low sliding speed, wear proceeds by the excessive failure of matrix and fiber, whilst, at higher sliding speed, matrix fracture near fiber plays a major role in wear. Wear resistance of 125°C is inferior to that of room temperature due to the reduction of mechanical properties followed by matrix softening and poor bonding.
Technical Paper

A Study for Improving the Sound Quality of Vehicle Horns through Acoustic Characteristics Analysis and CAE Method Development

2013-04-08
2013-01-0422
It is necessary for vehicle horns not only to satisfy regulations on the sound level but also to fulfill various demands related with sound quality. For example, a disk type horn which is attached on most of small size vehicles has been required to improve its sharp feeling sound. However, the improvement of horn sound has been deterred mainly due to the deficiency of the understanding on how design factors are related with emotional judgments on horn sound. In addition, a proper CAE tool is not available in the process of horn design since it is difficult to describe multi-physical phenomena engaged with horns. The purpose of this study is to improve the sound quality of a disk type horn. In order to achieve this goal, firstly, acoustic characteristics of horns were obtained through a series of experiments. In addition, various sound quality metrics were examined in order to derive design factors affecting sound quality enhancement.
Technical Paper

Model Based Control for a Pressure Control Type CVT

2004-08-23
2004-40-0031
A model based control algorithm for the pressure control type CVT has been developed. First, a P-line is proposed from the steady state relationship between the primary and secondary pressure for the given speed ratio to predict the shift performance. The P-line shows the pressure difference from the steady state primary pressure to the maximum(or minimum) pressure available for the given secondary pressure. It is found from the P-line that the bigger the pressure difference, the faster the shift speed. Based on the steady state characteristics of the pressure control type ratio control valve(RCV), the model based control algorithm is proposed. In the model based control, ratio control solenoid valve(RCSV) control duty is supplied in the feedforward loop.
X