Refine Your Search

Topic

Author

Search Results

Video

Development of Hybrid System for Mid-Size Sedan

2011-11-07
Consumers design different PHEVs than expert analysts assume. Experts almost uniformly assume PHEVs that offer true all-electric driving for 10 to 60 miles; consumers are more likely to design PHEVs that do not offer true all-electric driving and have short ranges over which they use grid-electricity. Thus consumers? PHEV designs are less expensive. These consumer PHEV designs do, or don?t, produce lower GHG emissions than experts? PHEVs over the next ten years. The devil is in the details, i.e., which powerplant emissions to assign to new electricity demand: marginal or average. If (based on marginal powerplant emissions) it makes almost no difference whether we sell consumer-designed or expert-assumed PHEVs over the next ten years, yet as the grid continues to de-carbonize all-electric PHEV designs emerge as clearly the better option, there is a trajectory we could be on from blended, ?short range? PHEVs to all-electric ?long range? PHEVs.
Journal Article

An Improvement of Brake Squeal CAE Model Considering Dynamic Contact Pressure Distribution

2015-09-27
2015-01-2691
In the brake system, unevenly distributed disc-pad contact pressure not only leads to a falling-off in braking feeling due to uneven wear of brake pads, but also a main cause of system instability which leads to squeal noise. For this reason there have been several attempts to measure contact pressure distribution. However, only static pressure distribution has been measured in order to estimate the actual pressure distribution. In this study a new test method is designed to quantitatively measure dynamic contact pressure distribution between disc and pad in vehicle testing. The characteristics of dynamic contact pressure distribution are analyzed for various driving conditions and pad shape. Based on those results, CAE model was updated and found to be better in detecting propensity of brake squeal.
Journal Article

Study of Optimizing Sliding Door Efforts and Package Layout

2017-03-28
2017-01-1302
A sliding door is one of the car door systems, which is generally applied to the vans. Compared with swing doors, a sliding door gives comfort to the passengers when they get in or out the car. With an increasing number of the family-scale activities, there followed a huge demand on the vans, which caused growing interests in the convenience technology of the sliding door system. A typical sliding door system has negative effects on the vehicle interior package and the operating effort. Since the door should move backward without touching the car body, the trajectory of the center rail should be a curve. The curve-shaped center rail infiltrates not only the passenger shoulder room, but also the opening flange curve, which results in the interior package loss. Moreover, as the passenger pulls the door outside handle along the normal direction of the door outer skin, the curved rail causes the opening effort loss.
Technical Paper

An Experimental and Computational Study of Flow Characteristics in Exhaust Manifold and CCC (Close-Coupled Catalyst)

1998-02-23
980128
A combined experimental and computational study of 3-D unsteady compressible flow in exhaust manifold and CCC system was performed to understand the flow characteristics and to improve the flow distribution of pulsating exhaust gases within monolith. An experimental study was carried out to measure the velocity distribution in production exhaust manifold and CCC under engine operating conditions using LDV (Laser Doppler Velocimetry) system. Velocity characteristics were measured at planes 25 mm away from the front surface of first monolith and between two monolithic bricks. To provide boundary conditions for the computational study, velocity fields according to crank angle were also measured at the entrance of exhaust manifold. The comparisons of exhaust gas flow patterns in the junction and mixing pipe between experimental and computational results were made.
Technical Paper

Design and Development of a Spray-guided Gasoline DI Engine

2007-08-05
2007-01-3531
Adopting the Spray-guided Gasoline Direct Injection (SGDI) concept, a new multi-cylinder engine has designed. The engine has piezo injectors at the central position of its combustion chamber, while sparkplugs are also at the center. The sparkplug location is designed so that the spark location is at the outer boundary of the fuel spray where the appropriate air-fuel mixture is formed. A few important operating parameters are chosen to investigate their effects on the combustion stability and fuel consumption. The final experimental results show a good potential of the SGDI engine; the fuel consumption rate was much less than that of the base Multi Port Injection (MPI) engine at various engine operating conditions.
Technical Paper

Development of an Engine Torquemeter for In-vehicle Application and Parametric Study on Fuel Consumption Contribution

2007-04-16
2007-01-0964
The mechanical energy of an engine is lost by engine friction and in driving the engine's auxiliary components, which is then transferred to transmission. Thus, it is very important to know the exact value of engine friction and the driving torque of engine's auxiliary components in order to reduce fuel consumption of an engine by reducing these losses. And, it is also helpful to know the braking torque of an engine in actual vehicle so as to improve vehicle's driving performance. For these reasons, present study developed an engine torquemeter for in-vehicle application, and measured braking torque of an engine in vehicle and analyzed fuel consumption contributions of engine's auxiliary components.
Technical Paper

E3 System – A Two speed Accessory Belt Drive System for Reduced Fuel Consumption

2008-06-23
2008-01-1521
All vehicles have some or all accessories such as alternators, air conditioner compressors, power steering pumps, and water pumps. These devices are mounted on the front of the engine and are powered by a pulley mounted on the front of the crankshaft. This power represents a parasitic loss and this loss is greater at higher engine speeds. To reduce the impact of the accessories on the engine, a two speed transmission that reduces the accessories speed at off-idle conditions was designed, implemented, and tested on several vehicles. The vehicles were tested for fuel economy on the Japanese 10.15 Mode driving cycle, the FTP75 city cycle, and the HWFET Highway Cycle. Results showed an average of 5% reduction in fuel consumption and a corresponding 5% in CO2 with no impact of accessory performance and vehicle drivability. Simulations with GT-Drive software was used to determine the optimum speed reduction and the threshold switching speed that maximizes fuel savings.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

An Optimization of Dual Continuously Variable Valve Timing for Reducing Intake Orifice Noise of a SI Engine

2008-04-14
2008-01-0892
For optimizing the performance of SI engine such as engine torque, fuel consumption, and emissions, various types of system for variable valve timing were developed by many automotive researchers. In this paper, we investigated the relationship between valve timing and intake orifice noise, and suggested how to improve NVH (Noise, Vibration and Harshness) performance as well as engine torque. Some experiments using the engine dynamometer were carried over about 150 different operating conditions. BEM analysis was also conducted in order to calculate acoustic modes of intake system. The results show that the valve timing and overlap of breathing systems have influence on NVH behavior, especially intake orifice noise over whole range of operating conditions. Valve timing and overlap of intake and exhaust valve were optimized in the view of sound quality as well as overall noise level.
Technical Paper

Fatigue Life Estimation of Suspension Components using Statistical Method

2009-04-20
2009-01-0080
Depending on the scatter of material properties, geometrical shapes and load conditions, the fatigue life of mechanical components has wide range of scatter although they were tested under same conditions. This scatter is the main reason of different results between observed and predicted fatigue life. This study shows how to estimate the fatigue life distribution by analysis. Dominant factors for fatigue life distributions and their scatter could be obtained by comparing the analysis results and fatigue test results. Applying the scatter of these factors to fatigue analysis, it was possible to predict fatigue life distributions. This will improve the reliability of fatigue life estimation, therefore a more robust and reliable component design is possible.
Technical Paper

An Optimized Control Strategy for Parallel Hybrid Electric Vehicle

2003-03-03
2003-01-1329
A systematic process of optimization is suggested to obtain the best control maps for a parallel type hybrid electric vehicle. Taking the fuel consumption as the cost function and driving cycle as part of the constraints, an optimization problem for CVT pulley ratio control and motor torque control can be formulated. The change of the battery charge state between the start and end point of the given driving cycle also works as a constraint. In order to see the effect of various control strategies on system behavior and overall fuel consumption, a simulation model was built to accommodate the functional blocks representing hybrid powertrain subsystem components and corresponding control units.
Technical Paper

Closed-Loop Control Method for Monitoring and Improving the Diesel Combustion Noise

2016-06-15
2016-01-1770
This paper presents two closed-loop control methods for monitoring and improving the combustion behavior and the combustion noise on two 4-cylinder diesel engines, in which an in-cylinder pressure and an accelerometer transducer are used to monitor and control them. Combustion processes are developed to satisfy the stricter and stricter regulations on emissions and fuel consumption. These combustion processes are influenced by the factors such as engine durability, driving conditions, environmental influences and fuel properties. Combustion noise could be increased by these factors and is detrimental to interior sound quality. Therefore, it is necessary to develop robust combustion behaviors and combustion noise. For this situation, we have developed two closed-loop control methods. Firstly, a method using in-cylinder pressure data was developed for monitoring and improving the combustion noise of a 1.7L engine. A new index using the values calculated from the data was proposed.
Technical Paper

Development of Engine Control Using the In-Cylinder Pressure Signal in a High Speed Direct Injection Diesel Engine

2011-04-12
2011-01-1418
Emissions regulations are becoming more severe, and they remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches to reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of the pressure sensor and the complex engine head design for the extra equipment are stressful for the manufacturers. In this paper, a cylinder-pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to burn (MFB50) and the IMEP are valuable for identifying combustion status. These two in-cylinder quantities are measured and applied to the engine control logic.
Technical Paper

Influence of the Injector Geometry at 250 MPa Injection in a Light-Duty Diesel Engine

2017-03-28
2017-01-0693
This paper investigated the influence of the injector nozzle geometry on fuel consumption and exhaust emission characteristics of a light-duty diesel engine with 250 MPa injection. The engine used for the experiment was the 0.4L single-cylinder compression ignition engine. The diesel fuel injection equipment was operated under 250MPa injection pressure. Three injectors with nozzle hole number of 8 to 10 were compared. As the nozzle number of the injector increased, the orifice diameter decreased 105 μm to 95 μm. The ignition delay was shorter with larger nozzle number and smaller orifice diameter. Without EGR, the particulate matter(PM) emission was lower with larger nozzle hole number. This result shows that the atomization of the fuel was improved with the smaller orifice diameter and the fuel spray area was kept same with larger nozzle number. However, the NOx-PM trade-offs of three injectors were similar at higher EGR rate and higher injection pressure.
Technical Paper

Using Analytical Techniques to Understand the Impacts Intelligent Thermal Management Has on Piston NVH

2022-06-15
2022-01-0930
In order to align with net-zero CO2 ambitions, automotive OEMs have been developing increasingly sophisticated strategies to minimise the impact that combustion engines have on the environment. Intelligent thermal management systems to actively control coolant flow around the engine have a positive impact on friction generated in the power cylinder by improving the warmup rate of cylinder liners and heads. This increase in temperature results in an improved frictional performance and cycle averaged fuel consumption, but also increases the piston to liner clearances due to rapid warm up of the upper part of the cylinder head. These increased clearances can introduce piston slap noise and substantially degrade the NVH quality to unacceptable levels, particularly during warmup after soak at low ambient temperatures. Using analytical techniques, it is possible to model the thermo-structural and NVH response of the power cylinder with different warm up strategies.
Technical Paper

Diesel/Gasoline Dual Fuel Powered Combustion System based on Diesel Compression Ignition Triggered Ignition Control

2013-04-08
2013-01-1718
The author's new approach, diesel and gasoline dual fuel powered combustion system based on diesel CI triggered ignition control, provides not only how key ideas extracted from LTC concept could be established in a small bore HSDI turbocharged diesel engine but also which mechanism works to bring almost same benefits as we have experienced in both conventional diesel combustion and LTC based advanced combustion systems like HCCI, PCCI and PPCI combustions. The combustion system presented in the paper physically combines both mixing controlled diesel compression ignition combustion and gasoline premixed charge combustion in one power generation cycle. Gasoline fuel in the system is provided by the conventional gasoline PFI system firstly into the cylinder in which premixed charge spreads out. In compression stroke, the exact amount of diesel fuel is injected into the highly diluted EGR ambient with premixed gasoline charge.
Technical Paper

A Study for Fuel Economy Improvement on Applying New Technology for Torsional Vibration Reduction of Crank Pulley

2013-10-14
2013-01-2514
The method of Front End Auxiliary Drive (FEAD) system optimization can be divided into two ways. One is to use a mechanical device that decouples crank pulley from torsional vibration of crank shaft by using characteristics of spring. The other is to control belt tension through auto-tensioner in addition of alternator pulley device. Because the former case has more potential to reduce belt tension than the latter case, the development of mechanically decoupled crank pulley, despite of its difficulty of development, is getting popular among the industry. This paper characterizes latest crank pulley technologies, Crank Decoupler and Isolation Pulley, for torsional vibration reduction through functionality measurement result which composed of irregularity, slip, tensioner movement, belt span vibration, bearing hubload of idler and so on. Also it investigates their potential of belt tension reduction through steady state point fuel consumption test on dynamometer.
Technical Paper

Tumble Flow Measurements Using Three Different Methods and its Effects on Fuel Economy and Emissions

2006-10-16
2006-01-3345
In-cylinder flows such as tumble and swirl have an important role on the engine combustion efficiencies and emission formations. In particular, the tumble flow which is dominant in current high performance gasoline engines has an important effect on the fuel consumptions and exhaust emissions under part load conditions. Therefore, it is important to understand the effect of the tumble ratio on the part load performance and optimize the tumble ratio for better fuel economy and exhaust emissions. First step in optimizing a tumble flow is to measure a tumble ratio accurately. In this research the tumble ratio was measured, compared, and correlated using three different measurement methods: steady flow rig, 2-Dimensional PIV (Particle Image Velocimetry), and 3-Dimensional PTV (Particle Tracking Velocimetry). Engine dynamometer test was also conducted to find out the effect of the tumble ratio on the part load performance.
Technical Paper

Development of Fuel Consumption of Passenger Diesel Engine with 2 Stage Turbocharger

2006-04-03
2006-01-0021
High specific power, additional hardware and mapping optimization was done to achieve reduction of fuel economy for current engine in this study. 2 stage turbocharger with serial configuration was best candidate not only for high specific power at high engine speed but also for increase of low end torque for current engine. This increase of low end torque is important for development of transient characteristic of vehicle. DoE and efficient EGR Cooler was applied for optimization of fuel economy. DoE was useful for optimization of fuel consumption affected by various fuel injection parameters. This DoE was also efficient for matching optimal fuel economy after change of engine hardware. Performance improvement of engine with 2 stage turbocharger VGT was evaluated and additional development of fuel economy was performed in this study.
Technical Paper

A Study on Development of Body Structure Using Hydroforming of a Thin-Walled UHSS Tube

2013-03-25
2013-01-0035
Hydroforming process is an emerging manufacturing technology which allows engineers to use continuous closed section without flange for spot weld in a given package envelope. In this research, Hydroforming is applied to a front pillar and a roof side rail for improvement of obstruction angle, body stiffness and roof crush resistance. In addition, the joints of front / center pillar that were integrated into the hydroforming part and structure of package tray were improved. As a result, front pillar width is reduced by 23%, body torsional stiffness is increased by 45% and roof crush resistance is improved by 35%.
X