Refine Your Search

Topic

Search Results

Technical Paper

A Diagnostic Technology of Powertrain Parts that Cause Abnormal Noises Using Artificial Intelligence

2020-09-30
2020-01-1565
In general, when a problem occurs in a component of powertrains, various phenomena appear, and abnormal noise is one of them. The service mechanics diagnose the noise through analysis by using their ears and equipment. However, depending on their experiences, analysis time and diagnostic accuracy vary greatly. To shorten the analysis time and improve the diagnostic accuracy, we have developed a technology to diagnose powertrain parts that cause abnormal noises. To create the best deep learning model for our diagnosis, we tried to collect many abnormal noises from various parts. The collected noise data was measured under idle and various operating conditions from our vehicles and test cells. This noise data is abnormal noises generated from engines, transmissions, drive system and PE (Power Electric) parts of eco-friendly vehicles. From the collected data, we distinguished good and bad data through detailed analysis in time and frequency domain.
Technical Paper

Eco-Vehicle Battery System Big-Data Analysis and Fault Mode and Fault Tree Analysis (FTA) Related Robust System Development

2020-04-14
2020-01-0447
High-voltage battery system plays a critical role in eco-friendly vehicles due to its effect on the cost and the electric driving range of eco-friendly vehicles. In order to secure the customer pool and the competitiveness of eco-vehicle technology, vehicle electrification requires lowering the battery cost and satisfying the customer needs when driving the vehicles in the real roads, for example, maximizing powers for fun drive, increasing battery capacities for achieving appropriate trip distances, etc. Because these vehicle specifications have a critical effect on the high-voltage battery specification, the key technology of the vehicle electrification is the appropriate decision on the specification of the high-voltage battery system, such as battery capacity and power. These factors affect the size of battery system and vehicle under floor design and also the profitability of the eco-friendly vehicles.
Technical Paper

The Procedure for Improving R&H Performance of the New 2010 Hyundai Sonata by Modal Parameter Modification of Its Body

2010-04-12
2010-01-1136
Various deformation shapes of the vehicle body were investigated for the purpose to establish vehicle body's performance criteria which correlates well to handling performance and ride comfort. Using CAE tool, the dynamic behavior of a structure by its modal parameter can be described instead of by its nodes and elements. Each modal characteristic in a dynamic system is reduced by its modal stiffness, its modal mass and its damping parameter in the model. This technology offers not only computational efficiency but also parametric model enabling easy what-if simulation. This reduced model can be obtained by modal test as well as simulation of full FE model. It was also investigated that which mode is sensitive to ride or handling performance using the parameterized model. The body stiffness of the brand new 2010 SONATA was improved on reference to the sensitivity analysis. The ride and handling performance of the 2010 SONATA were verified by computer simulation and vehicle field test
Technical Paper

Development of Accelerated Corrosion Test Mode Considering Environmental Condition

2002-03-04
2002-01-1231
Accelerated simulation of vehicle corrosion in a controlled environment not only involves large chambers for actual vehicle tests, but also requires careful consideration of interactions between various parameters given a short time period within which the test is bounded. A new corrosion durability test mode reproducing various field conditions using salt spray, climatic, sunlight simulation and cold chambers has been developed. Verification of the test mode is carried out using four actual vehicle corrosion tests correlated against used cars of Nort h America and Northern Europe. The process of new corrosion test mode is discussed along with the characteristics of the test chambers.
Technical Paper

The Development of Lab-Simulation Test to Accelerate the Durability Validation of Engine Mounting and Wiring Harness

2003-03-03
2003-01-0949
With the advent of cars with computerized engines, drivers sometimes suffer discomfort with “check engine” light problem, and as a result, insist on increasing levels of reliability in their cars. Hence, reliability of the wiring harness has become a very important automotive design characteristic. On one hand, the more secure an engine mounting system is, the more stable the engine wiring harness is. In order to enhance their durability, car manufacturers need to perform many validation tests during the development phase which involves a lot of time and cost. In this study, a newly developed lab-simulation test is proposed to qualify the design of engine mounting and engine wiring early in the design cycle and reduce time and expense. The lab-simulation test has contributed to a significant cost and time reduction and has shown good correlation to the original proving ground test.
Technical Paper

A Novel Electric-Power-Steering (EPS) Control Algorithm Development for the Reference Steering Feel Tracking

2016-04-05
2016-01-1546
This paper describes a reference steering feel tracking algorithm for Electric-Power-Steering (EPS) system. Development of the EPS system with intended steering feel has been time-consuming procedure, because the feedforward map-based method has been applied to the conventional EPS system. However, in this study, a three-dimensional reference steering feel surface, which is determined from current vehicle states, is proposed. In order to track the proposed reference steering feel surface, sliding mode approach is applied to second-order steering dynamics model considering a coulomb friction model. An adaptive technique is utilized for robustness against uncertainties. In order to validate the proposed EPS control algorithm, hardware-in-the-loop simulation (HILS) has been conducted with respect to a typical steering test. It is shown that the reference steering feel is realized well by the proposed EPS control algorithm.
Technical Paper

A Dynamic GUI Platform for Bluetooth Automotive Application Voice Communication Package

2018-04-03
2018-01-0023
In this paper, a reconfigurable object-oriented simulator is proposed to analyze the performance of Bluetooth Voice Communication Package (VCP) for telecom purposes like hands-free vehicular communication. It consists of a graphical user interface (GUI) for research or validation engineers to investigate system specific performance. For example, a research engineer can utilize this GUI to analyze a system performance using different noise reduction filtering techniques in vehicular hands-free applications. Also, a validation engineer can utilize this GUI to evaluate vehicular Bluetooth audio quality for different vehicles at different driving conditions (e.g. speeds, fan levels, etc.). The proposed Bluetooth VCP model consists of modules like Audio Equalization (EQ), Acoustic Echo Canceller (AEC), and Noise Suppression (NS). This dynamic GUI platform provides the scope to add and analyze new proposed filtering techniques.
Technical Paper

Co-operative Control of Regenerative Braking using a Front Electronic Wedge Brake and a Rear Electronic Mechanical Brake Considering the Road Friction Characteristic

2012-09-17
2012-01-1798
In this study, a co-operative regenerative braking control algorithm was developed for an electric vehicle (EV) equipped with an electronic wedge brake (EWB) for its front wheels and an electronic mechanical brake (EMB) for its rear wheels. The co-operative regenerative braking control algorithm was designed considering the road friction characteristic to increase the recuperation energy while avoiding wheel lock. A powertrain model of an EV composed of a motor, and batteries and a MATLAB model of the control algorithm were also developed. They were linked to the CarSim model of the vehicle under study to develop an EV simulator. The EMB and EWB were modeled with an actuator, screw, and wedge to develop an EMB and EWB simulator. A co-simulator for an EV equipped with an EWB for the front wheels and an EMB for the rear wheels was fabricated, composed of the EV and the EMB and EWB simulator.
Technical Paper

Enhancing Meta Model of the Brake Pad Friction Coefficient Using the Explainable Machine Learning

2022-09-19
2022-01-1175
Recently, increasing system complexity and various customer demands result in the need for highly efficient vehicle development processes. Once the brake torque is predicted accurately during the driving scenario in the earlier stage, it will be able to prevent the changing the vehicle or brake system design to satisfy the legal regulation and customer requirement. As brake torque performance target allocate brake pad friction coefficient level and characteristic, the accurate friction coefficient prediction should be preceded for accurate prediction for brake torque. Generally, the friction coefficient of the brake pad is known to vary nonlinearly depending on the physical properties of the disc and the pad, as well as the brake disc rotational speed, the disc temperature, and the hydraulic pressure. Furthermore, it varies depending on the driving scenario even when other conditions are the same. Therefore, it is necessary to apply new methods to solve these challenges.
Technical Paper

Development of Fuel Cell Hybrid Vehicle by Using Ultra-Capacitors as a Secondary Power Source

2005-04-11
2005-01-0015
Hyundai motor company has developed a fuel cell hybrid vehicle that has ultra-capacitors as a secondary power source. The simulation of fuel cell vehicles allows the user to analyze various types of fuel cell systems and hybrid configurations before implementing into a real system and to reduce the development time and cost. Before implementing fuel cell vehicles, a fuel cell vehicle simulation model, that has component modularity and forward facing characteristics, was developed. The simulation model was used in designing the fuel cell hybrid vehicle to select component sizes and a hybrid configuration. The hybridization by using ultra-capacitors provided better fuel economy and power response than the hybridization by using batteries.
Technical Paper

Development of a Prediction Model for Tire Tread Pattern Noise Based on Convolutional Neural Network with RMSProp Algorithm

2022-03-29
2022-01-0884
Tire tread pattern noise is a major source of road noise generated by motor vehicles. Recently, noise control technology has been developing, and low-noise motor vehicles, such as electric vehicles and hybrid vehicles, have been commercialized. The importance of low-noise tires has increased since regulations R117 for tire noise and R51.03 for motor vehicle noise have been strengthened. To evaluate the tire noise in the development stage of motor vehicles, finished products of tires are required; hence, financial and time costs should be invested. Therefore, it is highly useful to predict tire noise levels in the early stages. Recently, a technology to predict the tire pattern noise using a supervised training method of artificial neural network (ANN) has been developed. The tire tread depth is estimated using the shading of the full image of the actual tire, and the leading edge of the contact patch is calculated using tire contact patch images.
Journal Article

A Study on the Improvement of EV One-Pedal Driving System Interface and Cost Reduction

2022-03-29
2022-01-0645
In this study it will show, big data analysis and user survey of driving records were conducted to investigate frequency of use and ease of operation of the regen paddle to control one-pedal driving system in electric vehicle. According to 3.8 million driving record big data analysis result, it was found that the driver manipulates 3.31 times on average during a single trip, mainly during the early stages of driving. According to user observation research result in 41.8% of participants did not used or used less than 5 time of regen paddle during one single trip. Also 336 participants, which occupy 83%, responded that the regen paddle manipulation for one-pedal driving was inconvenient. In conclusion, because of the use frequency of the regen paddle is low and the operation of regen paddle is inconvenient. It seems necessary to change the design of the regen paddle.
Technical Paper

A Study on the Improvement of Driver's Inconvenience to Ensure Driving Stability in Bad Weather Conditions

2023-04-11
2023-01-0651
Bad weather conditions such as torrential rain, heavy snow, and thick fog frequently occur worldwide. Vehicle accidents in such bad weather conditions account for a significant portion of all vehicle accidents, and the level of damage is relatively severe compared to other accidents that occur in clear weather. This paper analyzes the driver's driving stability in bad weather conditions, which has such a significant meaning, in various ways through experiments on the inconvenience experienced by the driver. In this study, three levels of bad weather conditions were implemented in a driving simulator environment to evaluate driver inconvenience for six activities. Through driving experiment, quantitative bio-signals and vehicle signals were analyzed in each weather condition. The SD survey was used to assess the driver's inconvenience level for activities performed while driving and analyze the ranking of inconvenience.
Technical Paper

Diagnosis and Prognosis of Chassis Systems in Autonomous Driving Conditions

2023-04-11
2023-01-0741
Expanding various future mobilities such as purpose built vehicle (PBV), urban air mobility (UAM), and robo-taxi, the application of autonomous driving system (ADS) technology is also spreading. The main point of ADS is to ensure safety by monitoring vehicle anomalies to prevent functional failure or accident. In this study, a model-based diagnosis and prognosis process was established using degradation data generated during autonomous driving simulation. A vehicle model was designed using Modelica/Dymola, and autonomous driving simulation was performed by integrating the lane keeping assistant (LKA) system with the vehicle model using Matlab/Simulink. Degradation data for the 3 components (a shock absorber damper, a suspension bush, and a tire) of the chassis system were input into the integrated simulation model. The degradation behavior was monitored with K-nearest neighbor (K-NN) and Gaussian mixture model (GMM).
Technical Paper

Customer Complaints Analysis Using Textmining Method

2022-03-29
2022-01-0131
In recent years, the automobile industry has been making efforts to develop vehicles that satisfy customers' emotions rather than malfunctions. The Vehicle Dependability Study(VDS) has been strengthened emotion items since the introduction of the new evaluation system VDS3 from 2015. The ratio of emotion items increased from 11% to 25%. In order to clarify the problem and cause of emotion items, we analyzed verbatim which is the customers' complaint data provided by J.D power every year, but it was difficult to extract customers' intention because the number of verbatim is small and expressed in terms of customer’s term rather than engineer’s term. To solve the problem, we are additionally colleting big data such as internet, warranty, online survey. Since the amount of data is very large, we developed textmining techniques such as dictionary, topic, Support Vector Machine(SVM), n-gram to improve process.
Technical Paper

Development of a Vehicle Electric Power Simulator for Optimizing the Electric Charging System

2000-03-06
2000-01-0451
The electric power system of a modern vehicle has to supply enough electrical energy to numerous electrical and electronic systems. The electric power system of a vehicle consists of two major components: a generator and a battery. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight are required when the capacities of the generator and the battery are to be determined for a vehicle. In order to avoid the over/under design problem of the electric power system, an easy-to-use and inexpensive simulation program may be needed. In this study, a vehicle electric power simulator is developed. The simulator can be utilized to determine the optimized capacities of generators and batteries appropriately. To improve the flexibility and easy usage of the simulation program, the program is organized in modular structures, and is run on a PC.
Technical Paper

Analysis of Sensitivity and Optimization for Chassis Design Parameters on the X-Wind Stability

2015-03-10
2015-01-0025
In the view point of driving safety, the crosswind sensitivity of a vehicle becomes more important, as the driving speed in highway gets higher in these days. The sensitivity of a vehicle to crosswind depends on many factors, including the design of the suspension and aerodynamics of the body, etc. However, the knowledge about this phenomenon has still to be improved, in order to develop vehicle with optimum characteristics for crosswind stability. In this research, the physics behind the sensitivity of a vehicle is discussed in detail through various kinds of virtual test using computer aided engineering (CAE) simulation scheme. In the first, a reliable simulation model for vehicle, driver, wind generator and interactions among them is built. This simulation model is verified by comparison with test results of real vehicle. Then, the sensitivity analysis is carried out to find out the most influential design parameters.
Technical Paper

Driver Mental Stress in Response to Thermal Stress Change during Highway Driving

2023-04-11
2023-01-0146
Monitoring driver thermal stress is an integral step for developing an automated climate control function. In this experimental study, various physiological measures for driver’s thermal stress were tracked while intentionally by altering thermal conditions of the seat with a seat air conditioning system (ACS) in summer and a seat heating system (HS) in winter. It was aimed to determine reliable physiological measures for identifying the changes in thermal status induced by the two seat climate control systems. In the first experiment, twenty experienced drivers drove a comfortable sedan for 60 minutes on a real highway while varying the intensity of the seat ACS every 10 minutes to incur ‘hot’ – ‘cool’ – ‘hot’ – ‘cool’ thermal stress. In the second experiment, a new group of eighteen drivers drove the same highway for 30 minutes while increasing the intensity of seat HS to incur ‘cold’ to ‘warm’ thermal stress.
Journal Article

High-Bandwidth Mechanical Hardware-In-The-Loop Emulation of Structural Dynamics for More Efficient NVH Development and Testing

2022-06-15
2022-01-0953
Numerical simulations offer a wide range of benefits. Therefore, they are widely used in research and development. One of the biggest benefits is the possibility of automated parameter variation. This allows testing different scenarios very quickly. Nevertheless, physical experiments in the laboratory or on a test rig are still, and will remain, necessary. Physical experiments offer benefits, e.g., for very complex and/or nonlinear systems and are required for the validation of numerical models. To enhance the quality of experimental NVH investigations and to make use of the benefits of numerical simulation during experimental investigations at the same time, numerical models can be integrated into physical test rigs using the mechanical hardware-in-the-loop (mHIL) method (also referred to as real-time dynamic substructuring, hybrid testing or active control of impedance).
Technical Paper

AI-based EV Range Prediction with Personalization in the Vast Vehicle Data

2024-04-09
2024-01-2868
It is an important factor in electric vehicles to show customers how much they can drive with the energy of the remaining battery. If the remaining mileage is not accurate, electric vehicle drivers will have no choice but have to feel anxious about the mileage. Additionally, the potential customers have range anxiety when they consider Electric Vehicles. If the remaining mileage to drive is wrong, drivers may not be able to get to the charging station and may not be able to drive because the battery runs out. It is important to show the remaining available driving range exactly for drivers. The previous study proposed an advanced model by predicting the remaining mileage based on actual driving data and based on reflecting the pattern of customers who drive regularly. The Bayesian linear regression model was right model in previous study.
X