Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP

2008-09-09
2008-32-0005
Just as CO2 reduction is required of four wheeled vehicles for environmental protection, similar environmental concerns drive the development of motorcycle oil technology. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Mr. Ito and his co-authors1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods:JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

The Development of PAG Refrigeration Lubricants for Air Conditioner with HFC134a

1995-02-01
951052
In order to clarify the relationship between the chemical structure of PAG (polyalkylene glycol) and the performance characteristics as the refrigeration lubricants used for HFC134a, performance tests were conducted using PAGs with different end groups and alkylene oxide chains in the presence of HFC134a. Newly developed dimethyl ether capped PAGs having more than 70 mol.% PO (propylene oxide) to less than 30 mol.% EO (ethylene oxide) as a monomer ratio were the most preferable of all PAGs tested. The refrigeration lubricants using these PAGs have been successfully introduced into the market for mobile air conditioning systems with refrigerant HFC134a.
Technical Paper

Development of New Hydraulic Fluids Specifications for Construction Machinery

2005-11-01
2005-01-3574
Hydraulic fluid (HF) specifications for mobile construction equipment called JCMAS HK and HKB have been established by the Fuels and Lubricants Committee of Japan Construction Mechanization Association (JCMA). The specifications are designated by two viscosity categories of single grade and multigrade. Each category has ISO viscosity grade (VG) 32 and 46. The JCMAS HK oils are recommended for use in hydraulic systems designed at pressure up to 34.3MPa(5000psi) and to heat hydraulic fluid up to 100 °C. These oils also provide wear control, friction performance, oxidation and rust protection, seal swell control and filterability performance. Two piston pump test procedures were developed to evaluate lubricating performance of these oils under high pressure conditions. The JACMAS HKB oils are classified as environmentally friendly oils due to the additional requirement for biodegradability.
Technical Paper

Experimental Analysis of Connecting Rod Bearing Seizures in Four-Cycle Gasoline Engines

1989-09-01
892114
In this work, the connecting rod bearing seizures as one of the problems latent to the high-output, high-speed engines are investigated. Studies are conducted on the evaluation of anti-seizure properties of a single connecting rod bearing installed in the test rig as well as in commercial engines. As the results of the former study, the bearing wear is affected by the rod surface roughness (Rmax ) and the oil temperature (viscosity). Further, frequent metal to metal contacts of bearings are observed by the electrical measuring apparatus under higher temperature, and full load conditions. While in the latter, it is found the total heat generated of the bearing is the important factor affective to the bearing seizures, and can be analyzed by using PV value, rod surface roughness and oil viscosity.
Technical Paper

The Effect of Ashless Additives for Non-Phosphorus and Non-Ash Engine Oil on Piston Detergency

2015-09-01
2015-01-2031
Recently, deposition of ash derived from engine oil on the surface of a diesel particle filter (DPF) has been reported to worsen the performance of the DPF. It is generally known that phosphorus in engine oil is adsorbed on the surface of an automotive exhaust catalyst and reduces the performance of the catalyst. Thus, the amounts of ash and phosphorus in engine oil have been decreased. We have developed a non-phosphorus and non-ash engine oil (NPNA) that does not contain metal-based detergents and zinc dialkyldithiophosphate (ZnDTP). We performed a performance test for NPNA using an actual engine and reported that the piston detergency and anti-wear performance of NPNA were sufficiently high. However, the piston detergency of NPNA required further improvement when engine running conditions were more severe.
Technical Paper

Impact of Non-Phosphorus and Non-Ash Engine Oil on After-Treatment Devices

2014-10-13
2014-01-2782
Automobile exhaust gas contains various harmful substances other than carbon dioxide, so exhaust gas post-processing devices have been developed to reduce their environmental load. Engine oil has contributed to the improvement of automobiles' environmental performance due to its excellent fuel-saving and long-drain properties. Recently, the lifetime of an exhaust gas post-processing device has been reported to decrease due to ash and phosphorus in engine oil. We have developed non-phosphorus and non-ash engine oil (NPNA), in which metal-based detergents and zinc dialkyldithiophosphate (ZnDTP) were not contained. We have performed a verification test for NPNA using an actual engine. In a performance test for a diesel particulate filter (DPF), the amount of soot and ash deposited onto a DPF was smaller when NPNA was used than when commercially available engine oil was used.
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP (Part II)

2009-11-03
2009-32-0080
As well as a four-wheeled vehicle, in the field of motorcycle, development of the CO2 reduction technology and practical use are required for global environment. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Ito1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods: JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
X