Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP

2008-09-09
2008-32-0005
Just as CO2 reduction is required of four wheeled vehicles for environmental protection, similar environmental concerns drive the development of motorcycle oil technology. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Mr. Ito and his co-authors1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods:JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

Evaluation of Engine Oil Deterioration Using a Comb-Shaped Electrode

2016-10-17
2016-01-2317
At present, the lifetime of engine oil is judged by chemically measuring the changes in its properties while running of an actual vehicle or by setting the standards for its replacement cycle in terms of travel distance and time. The advantage of the former is that the lifetime can be judged with a high degree of reliability, but its disadvantage is that information on the lifetime is difficult for users to obtain. The problem with the latter is that the standards are unreliable. Therefore, users need a simple and reliable method to evaluate the degradation of engine oil so they can determine the appropriate time to change it. We examined the possibility of evaluating the lifetime of engine oil by measuring its capacitance using a comb-shaped electrode. As a result, we found that the capacitance of four types of engine oil collected at markets tended to decrease during the initial stage of degradation and then increased in the later stage.
Technical Paper

Study of Non-Phosphorus and Non-Ash Engine oil

2011-08-30
2011-01-2127
Engine oils normally contain calcium detergents and ZnDTPs to have detergency and antiwear performance. However, it has been recently understood that these additives could deteriorate filter performance in catalyst and DPF. In this background this paper explains the study and the development about new type of engine oil excluding metal detergents and phosphorus compounds. The developed engine oil shows good durability in several JASO engine tests and a fleet test by formulating newly developed additives as substitute for calcium detergents and ZnDTPs.
Technical Paper

Lubricants Formulation Technology for Fuel Saving Performance in Automatic Transmissions

2015-09-01
2015-01-2037
The use of Automatic Transmission Fluids (ATFs) with lower viscosity and excellent anti-shudder durability for wet clutch system will be effective for improving fuel saving performance in automatic transmissions. In this study, two ATF formulation techniques were examined. The first trial formulation is to improve fatigue life in gear components even if a lower viscosity ATF is used. The second one is to improve anti-shudder durability for wet lock-up clutch system in AT units. As to fatigue life performance, the relation between molecular weight of Viscosity Index Improver (VII) and film formation property in EHL contact regions were experimentally investigated. ATFs containing VIIs with lower molecular weight tend to increasing EHL film thickness, resulting in a longer gear pitting fatigue life. Calcium detergents and ashless friction modifiers in ATFs were found to give a great impact on the anti-shudder performance.
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP (Part II)

2009-11-03
2009-32-0080
As well as a four-wheeled vehicle, in the field of motorcycle, development of the CO2 reduction technology and practical use are required for global environment. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Ito1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods: JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
X