Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Stability of Flowing Combustion in Adaptive Cycle Engines

2020-04-14
2020-01-0296
In an Adaptive Cycle Engine (ACE), thermodynamics favors combustion starting while the compressed, premixed air and fuel are still flowing into the cylinder through the transfer valve. Since the flow velocity is typically high and is predicted to reach sonic conditions by the time the transfer valve closes, the flame might be subjected to extensive stretch, thus leading to aerodynamic quenching. It is also unclear whether a single spark, or even a succession of sparks, will be sufficient to achieve complete combustion. Given that the first ACE prototype is still being built, this issue is addressed by numerical simulation using the G-equation model, which accounts for the effect of flame stretching, over a 3D domain representing a flat-piston ACE cylinder, both with inward- and outward-opening valves. A k-epsilon turbulence model was used for the highly turbulent flow field.
Technical Paper

New Experiments and Computations on the Regenerative Engine

1993-03-01
930063
The results of experiments and computations over a new two-cylinder regenerative cycle engine are reported. Heat regeneration by means of a reticulated ceramic matrix placed inside the combustion chamber was found to be very efficient, with transient, open throttle surface temperatures in excess of 1150°C. In most cases, the matrix caused a premature ignition of the premixed fuel and air. A time-dependent thermodynamic computation of the cycle shows that the cycle cannot produce shaft power as long as premature ignition is present. Different alternatives for engine design and operation are discussed, with basis on the computations. The highest efficiencies can be achieved by cycles where the compression phase is performed by an external compressor. The predicted performance of regenerative engines with direct fuel injection is similar to that of engines burning a premixed fuel-air mixture.
X