Refine Your Search

Topic

Author

Search Results

Technical Paper

Influence of Increasing Amount of Attapulgite on the Performance Properties of Cu-Free Brake-Pads

2020-10-05
2020-01-1601
Copper is almost inevitable functional filler in the brake-material and efforts to replace it are continuing since it is now known as a hazard to the aquatic life. It is always desirable to search for ingredients for Cu-free brake-pads, which will be beneficial for friction-related properties and especially fade resistance. Attapulgite, is a mineral which was proven to be an excellent substitute for asbestos in brake-pads long back. However, hardly anything in details is reported on its exact role in controlling tribo-properties of friction materials (FMs). It was of interest, if it can be helpful in enhancing the performance of Cu-free FMs. Hence, in this work a series of brake-pads (five types) was formulated and developed with increasing amount of attapulgite (0, 5, 10 and 15 wt. %) by compensating with inert barite particles in Cu-free FMs. The parent composition was fixed and instead of Cu powder, 10 wt.% stainless steel powder was used.
Technical Paper

Eco-Friendly Brake-Pads Using Ferritic Stainless-Steel Particles of Varying Sizes: Influence on Performance Properties

2020-10-05
2020-01-1602
Metallic particles in brake-friction materials (FMs) play a vital role in improving mainly strength, friction level, thermal conductivity and hence resistance to fade during braking operations. Although Copper was the most efficient and popular metallic ingredient in FMs, it is being phased out because of its proven threat to the aquatic life in the form of wear debris. Hardly any successful efforts are reported in open literature barring few on in the authors’ laboratory. It is well-known that the size and shape of particles affect the performance of composites apart from their type, concentration, etc. In this paper, Ferritic stainless steel (SS 434) particles were selected as a theme ingredient in two forms, first particulate (SSP) with two sizes, larger (30-45 micron) and smaller (10-20 micron) and also in the form of swarf. The aim was to investigate the size and shape effect of these ingredients when used to manufacture the brake-pads on the performance properties.
Technical Paper

Controlling the Performance of Copper-Free Brake-Pads by Varying Size of Graphite Particles

2020-10-05
2020-01-1604
Graphite plays a crucial role in friction materials, since it has good thermal conductivity, lubricity and act as a friction modifier. The right type, amount, shape, and size of the particles control the performance of the brake-pads. The theme of the study was investigating the influence of size of graphite particles (having all other specifications identical) on performance properties of brake-pads containing graphite particles in the average size of 60 μm, 120 μm, 200 μm and 400 μm. Physical, mechanical and chemical characterization of the developed brake-pads was done. The tribological performance was studied using a full- scale inertia brake dynamometer following a Japanese automobile testing standard (JASO C406). Tribo-performance in terms of fade resistance, friction stability and wear resistance were observed best for smaller graphite particles. It was concluded that smaller size serves best for achieving best performance properties barring compressibility.
Technical Paper

Influence of Particle Size of Graphite on Performance Properties of Friction Composites

2007-10-07
2007-01-3967
Non-Asbestos Organic (NAO) brake- material research has been significant in the last decade in an attempt to replace the conventional semi-metallic and asbestos based materials. Influence of ingredients in this multi-ingredient (generally 10-25 in different proportions) system on performance properties, however, is still not thoroughly researched area because of complexity involved and needs intensive efforts to understand this aspect. Graphite is one of the most important and almost inevitable ingredients in friction materials. A wide variety of graphite varying in origin, particle size, crystallinity, thermal conductivity etc. is used by the industry. An in-depth and systematic study on the influence of size of graphite on tribo-performance, however, is not available.
Technical Paper

Development and Evaluation of New Binders for Friction Materials as Alternative to Traditional Phenolics

2007-10-07
2007-01-3945
Phenolics or their modified versions are invariably used as binder materials for friction composites which consist of multiple ingredients. However, phenolics are known for their inherent serious problems such as; poor shelf life, which poses constraints for storage and transportation; evolution of harmful volatiles leading to voids, cracks and environmental pollution etc. In order to overcome these, three new thermoset able resins having oxazine ring were synthesized in the laboratory. These resins proved to be free from the above mentioned drawbacks. These were tribo-evaluated to explore the possibility of replacing currently used phenolics in friction materials. In order to evaluate their tribo-potential as friction materials, friction formulations (non-asbestos organic NAO) based on these resins were developed in the laboratory in the form of brake-pads and tensile specimens.
Technical Paper

Extrapolation of Service Load Data

2009-05-13
2009-01-1619
Fatigue design has to account for the scatter of component geometry, material behavior and loading. Scatter of the first two variables is mainly due to manufacturing and material sourcing. Loading on the other hand depends decisively on operating conditions and customer usage. Loading is certainly most difficult to determine. Tests on proving ground or even long-term real time measurements are used to obtain actual load time histories. Because of the costs of measurements and safety measure, real-time measurements are used exceptionally to gain changes in the usage profile. In this paper, an attempt has been made to find the difference in the extrapolated data to the actual data. A comparison has been made between the actual road distance of 2000 km to the extrapolated data of 100 km, 500 km and 1000 km to 2000 km. The front Axle channel is taken for the study.
Technical Paper

Experimental Study of Variation between Quasi-static and Dynamic Load Deformation Properties of Bovine Medial Collateral Ligaments

2009-04-20
2009-01-0392
In a significant number of automobile crashes involving pedestrians, the ligaments which control the stability of the knee, often get severely loaded. In lateral impact on knee during automotive crashes, varus-valgus motion results in failure of ligament by avulsion or by rupture in the middle region It is known that properties vary in different regions of the ligament. Experimental measurement of tensile load-elongation behavior of the middle region of bovine medial collateral ligament at strain rates of 10−4 /s to 160/s are reported here. The results show that the stress-strain behavior is linear under quasi-static loading whereas it is nonlinear and strain rate sensitive in dynamic loading conditions.
Technical Paper

Experimental Investigation on the Use of Water Diesel Emulsion with Oxygen Enriched Air in a DI Diesel Engine

2001-03-05
2001-01-0205
A single cylinder, direct injection diesel engine was run on water diesel emulsion at a constant speed of 1500 rpm under variable load conditions. Water to diesel ratio of 0.4 on the mass basis was used. Tests indicated a considerable reduction in smoke and NO levels. This was accompanied by an increase in brake thermal efficiency at high outputs. HC & CO levels, ignition delay and rate of pressure rise went up. The heat release rate in the premixed burn period was higher. When the oxygen concentration in the intake air was enhanced in steps up to 25% along with the use of water diesel emulsion, the brake thermal efficiency was improved and there was a further reduction in the smoke level. HC and CO levels also dropped. NO emission went up due to increased temperature and oxygen availability. An oxygen concentration of 24% by volume was optimal as the NO levels were near about base diesel values.
Technical Paper

Theoretical and Experimental Investigation on Current Generation Pd/Rh Catalytic Converter

2002-03-04
2002-01-0905
Performance of a Current generation catalytic converter using Pd/Rh (10:1) as binary catalyst impeded on an ultra thin ceramic substrate and alumina wash coat is modeled for performance prediction and parametric optimization. Kinetic rates for the catalyst are reduced after conducting series of experiments on a passenger car engine. A new concept in mass transfer coefficient is introduced for improving accuracy of the model prediction. In order to take care of the precious metal resources and to become independent of precious metal price fluctuation, a new pattern of loading of precious metal is suggested for optimum performance and metal savings about 46 percent was observed. Experimental investigations were carried out to validate the established kinetic rates over a wide range operation of the engine and for the model validation. Satisfactory agreements are observed for the model prediction and experimental results.
Technical Paper

Multi-Objective Optimization of Two Stage Spur Gearbox Using NSGA-II

2017-07-10
2017-28-1939
Minimum weight and high-efficiency gearboxes with the maximum service life are the prime necessity of today’s high-performance power transmission systems such as automotive and aerospace. Therefore, the problem to optimize the gearboxes is subjected to a considerable amount of interest. To accomplish these objectives, in this paper, two generalized objective functions for two stage spur-gearbox are formulated; first objective function aims to minimize the volume of gearbox material, while the second aims to maximize the power transmitted by the gearbox. For the optimization purpose, regular mechanical and critical tribological constraints (scuffing and wear) are considered. These objective functions are optimized to obtain a Pareto front for the two-stage gearbox using a specially formulated discrete version of non-dominated sorting genetic algorithm (NSGA-II) code written MATLAB. Two cases are considered, in the first with the regular mechanical constraints.
Technical Paper

Transient Fatigue Analysis of Exhaust System Mounting Brackets for Commercial Vehicle - Correlation

2017-03-28
2017-01-1333
In commercial vehicles, exhaust system is normally mounted on frame side members (FSM) using hanger brackets. These exhaust system hanger brackets are tested either as part of full vehicle durability testing or as a subsystem in a rig testing. During initial phases of product development cycle, the hanger brackets are validated for their durability in rig level testing using time domain signals acquired from mule vehicle. These signals are then used in uni-axial, bi-axial or tri-axial rig facilities based on their severity and the availability of test rigs. This paper depicts the simulation method employed to replicate the bi-directional rig testing through modal transient analysis. Finite Element Method (FEM) is applied for numerical analysis of exhaust system assembly using MSC/Nastran software with the inclusion of rubber isolator modeling, meshing guidelines etc. Finite Element Analysis (FEA) results are in good agreement with rig level test results.
Technical Paper

Tomographic PIV Evaluation of In-Cylinder Flow Evolution and Effect of Engine Speed

2016-04-05
2016-01-0638
In this study, 3D air-flow-field evolution in a single cylinder optical research engine was determined using tomographic particle imaging velocimetry (TPIV) at different engine speeds. Two directional projections of captured flow-field were pre-processed to reconstruct the 3D flow-field by using the MART (multiplicative algebraic reconstruction technique) algorithm. Ensemble average flow pattern was used to investigate the air-flow behavior inside the combustion chamber during the intake and compression strokes of an engine cycle. In-cylinder air-flow characteristics were significantly affected by the engine speed. Experimental results showed that high velocities generated during the first half of the intake stroke dissipated in later stages of the intake stroke. In-cylinder flow visualization indicated that large part of flow energy dissipated during the intake stroke and energy dissipation was the maximum near the end of the intake stroke.
Technical Paper

Active Yaw Control of a Vehicle using a Fuzzy Logic Algorithm

2012-04-16
2012-01-0229
Yaw rate of a vehicle is highly influenced by the lateral forces generated at the tire contact patch to attain the desired lateral acceleration, and/or by external disturbances resulting from factors such as crosswinds, flat tire or, split-μ braking. The presence of the latter and the insufficiency of the former may lead to undesired yaw motion of a vehicle. This paper proposes a steer-by-wire system based on fuzzy logic as yaw-stability controller for a four-wheeled road vehicle with active front steering. The dynamics governing the yaw behavior of the vehicle has been modeled in MATLAB/Simulink. The fuzzy controller receives the yaw rate error of the vehicle and the steering signal given by the driver as inputs and generates an additional steering angle as output which provides the corrective yaw moment.
Technical Paper

Microstructure and Wear Behavior of Austempered and as-cast Ausferritic Gray Cast Irons

2011-01-19
2011-26-0051
The mechanical and wear behaviour of an alloyed gray cast iron with ausferrite microstructure directly obtained on solidification has been compared with austempered alloyed gray iron. As-cast ausferritic gray iron shows finer ausferrite and graphite flake morphology compared to austempered alloy. The volume of retained austenite is about 30% higher in as-cast ausferritic iron due to higher amount of alloying additions. The mechanical and wear properties of as-cast ausferritic iron are almost similar to austempered alloy.
Technical Paper

NOx Reduction in SI Engine Exhaust Using Selective Catalytic Reduction Technique

1998-02-23
980935
Copper ion-exchanged X-zeolite with urea infusion was tested for nitrogen oxide (NOx)conversion efficiency in this study. Temperature datapoints were obtained to arrive at peak activation temperatures. Variation of the air/fuel ratio showed the widening of the λ-window(the range of air-fuel ratios over which the NOx conversion efficiency is considerable); a maximum of 62% NOx conversion efficiency was obtained in the lean-burn range. Effects of space velocity variations were also observed. In order to minimise the deactivation of zeolite caused by water, ammonium carbonate and ammonium sulphate were deposited on the copper ion-exchanged X-zeolite and the corresponding NOx conversion efficiencies measured. Ammonia slip (leakage of unreacted ammonia), a prospective pollution hazard, was observed to be more in case of urea infusion than ammonium salt deposition at higher temperatures.
Technical Paper

Development and Performance Studies on Ion-Exchanged X-Zeolites as Catalysts for SI Engine Emission Control

1997-05-01
971652
Three catalysts based on X-zeolite have been developed by exchanging its Na+ ion with Copper, Nickel and Vanadium metal ions and tested in a stationary SI engine exhaust to observe their potentialities for NOx and CO controlling. The catalyst Cu-X, in comparison to Ni-X and V-X, exhibits much better NOx and CO reduction performance at any temperature. Maximum NOx conversion efficiencies achieved with Cu-X, Ni-X and V-X are 62.2%, 59.7% and 56.1% respectively. Unlike noble metals, the doped X-zeolite catalysts, studied here, maintain their peak NOx reduction performance through a wider range of A/F ratio. Back pressure developed across the catalyst bed is found to be well within the acceptable limits.
Technical Paper

Experimental Investigation of Multiple Injection Strategies on Combustion Stability, Performance and Emissions in a Methanol-Diesel Dual Fuel Non-Road Engine

2020-04-14
2020-01-0308
In this work methanol was port injected while diesel was injected using a common rail system in a single cylinder non-road CI engine. Experiments were conducted with single (SPI) and double (DPI - pilot and main) injection of the directly injected diesel at 75% load and at a constant speed of 1500 rpm. The effects of methanol to diesel energy share (MDES) and injection scheduling on combustion stability, efficiency and emissions were evaluated. Initially, in the SPI mode, the methanol to diesel Energy Share (MDES) was varied, while the injection timing of diesel was always fixed for best brake thermal efficiency (BTE). Increase in the MDES resulted in a reduction in NOx and smoke emissions because of the high latent heat of vaporization of methanol and the oxygen available. Enhanced premixed combustion led to a raise in brake thermal efficiency (BTE). Coefficient of variation of IMEP, peak pressure and BTE were deteriorated which limited the usable MDES to 43%.
Technical Paper

Spark Ignition Producer Gas Engine and Dedicated Compressed Natural Gas Engine - Technology Development and Experimental Performance Optimisation

1999-10-25
1999-01-3515
In the present study, a 17 kW, stationary, direct- injection diesel engine has been converted to operate it as a gas engine using producer-gas and compressed natural gas (CNG) as the fuels on two different operational modes called SIPGE (Spark Ignition Producer Gas Engine) and DCNGE (Dedicated Compressed Natural Gas Engine). The engine before conversion, was run on two other modes of operation, namely, diesel mode using only diesel and producer-gas-diesel-dual-fuel mode with diesel used for pilot ignition. The base data generated on diesel mode was used for performance comparison under other modes to ascertain the fuel flexibility. A technology development and optimisation followed by performance confirmation are the three features of this study. The exercise of conversion to SIPGE is a success since comparable power and efficiency could be developed. DCNGE operation also yielded comparable power with higher efficiency, which establishes the fuel flexibility of the converted machine.
Technical Paper

Effects of Compression Ratio and Water Vapor Induction on the Achievable Load Limits of a Light Duty Diesel Engine Operated in HCCI Mode

2019-04-02
2019-01-0962
Among the various Low Temperature Combustion (LTC) strategies, Homogeneous Charge Compression Ignition (HCCI) is most promising to achieve near zero oxides of nitrogen (NOx) and particulate matter emissions owing to higher degree of homogeneity and elimination of diffusion phase combustion. However, one of its major limitations include a very narrow operating load range owing to misfire at low loads and knocking at high loads. Implementing HCCI in small light duty air cooled diesel engines pose challenges to eliminate misfire and knocking problems owing to lower power output and air cooled operation, respectively. In the present work, experimental investigations are done in HCCI mode in one such light duty production diesel engine most widely used in agricultural water pumping applications. An external mixture preparation based diesel HCCI is implemented in the test engine by utilizing a high-pressure port fuel injection system, a fuel vaporizer and an air preheater.
Technical Paper

Evaluation of Lanthanum Based Diesel Oxidation Catalyst for Emission Reduction with and without Ceria Support

2016-02-01
2016-28-0023
Diesel particulates are mainly composed of elemental carbon (EC) and organic carbon (OC) with traces of metals, sulfates and ash content. Organic fraction of the particulate are considered responsible for its carcinogenic effects. Diesel oxidation catalyst (DOC) is an important after-treatment device for reduction of organic fraction of particulates. In this study, two non-noble metal based DOCs (with different configurations) were prepared and evaluated for their performance. Lanthanum based perovskite (LaMnO3) catalyst was used for the preparation of DOCs. One of the DOC was coated with support material ceria (5%, w/w), while the other was coated without any support material. Prepared DOCs were retrofitted in a four cylinder water cooled diesel engine. Various emission parameters such as particulate mass, particle number-size distribution, regulated and unregulated emissions, EC/OC etc., were measured and compared with the raw exhaust gas emissions from the prepared DOCs.
X