Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Eco-Friendly Brake-Pads Using Ferritic Stainless-Steel Particles of Varying Sizes: Influence on Performance Properties

2020-10-05
2020-01-1602
Metallic particles in brake-friction materials (FMs) play a vital role in improving mainly strength, friction level, thermal conductivity and hence resistance to fade during braking operations. Although Copper was the most efficient and popular metallic ingredient in FMs, it is being phased out because of its proven threat to the aquatic life in the form of wear debris. Hardly any successful efforts are reported in open literature barring few on in the authors’ laboratory. It is well-known that the size and shape of particles affect the performance of composites apart from their type, concentration, etc. In this paper, Ferritic stainless steel (SS 434) particles were selected as a theme ingredient in two forms, first particulate (SSP) with two sizes, larger (30-45 micron) and smaller (10-20 micron) and also in the form of swarf. The aim was to investigate the size and shape effect of these ingredients when used to manufacture the brake-pads on the performance properties.
Technical Paper

Controlling the Performance of Copper-Free Brake-Pads by Varying Size of Graphite Particles

2020-10-05
2020-01-1604
Graphite plays a crucial role in friction materials, since it has good thermal conductivity, lubricity and act as a friction modifier. The right type, amount, shape, and size of the particles control the performance of the brake-pads. The theme of the study was investigating the influence of size of graphite particles (having all other specifications identical) on performance properties of brake-pads containing graphite particles in the average size of 60 μm, 120 μm, 200 μm and 400 μm. Physical, mechanical and chemical characterization of the developed brake-pads was done. The tribological performance was studied using a full- scale inertia brake dynamometer following a Japanese automobile testing standard (JASO C406). Tribo-performance in terms of fade resistance, friction stability and wear resistance were observed best for smaller graphite particles. It was concluded that smaller size serves best for achieving best performance properties barring compressibility.
Technical Paper

Expanding the Role of the Wind-Driven Manipulator

1997-10-01
975589
The wind-driven dynamic manipulator is a device which uses the wind tunnel freestream energy to drive multi-axis maneuvers of test models. This paper summarizes work performed using the device in several applications and discusses current work on characterizing the aerodynamics of an X-38 vehicle model in pitch-yaw maneuvers. Previous applications in flow visualization, adaptive control and linear-domain parameter identification are now extended to multi-axis inverse force and moment measurement over large ranges of attitude. A pitch-yaw-roll version is operated with active roll to measure forces and moments during maneuvers. A 3-D look-up table generated from direct force calibration allows operation of the manipulator through nonlinear regimes where control wing stall and boom wake-wing interactions are allowed to occur. Hybrid designs combining conventional and wind-driven degrees of freedom are discussed.
Technical Paper

Aerothermodynamic Design of Supersonic Channel Airfoils for Drag Reduction

1997-10-01
975572
A supersonic channel airfoil (SCA) concept that can be applied to the leading edges of wings, tails, fins, struts, and other appendages of aircraft, atmospheric entry vehicles and missiles in supersonic flight for drag reduction is described. It is designed to be beneficial at conditions in which the leading edge is significantly blunted and the Mach number normal to the leading edge is supersonic. The concept is found to result in significantly reduced wave drag and total drag (including skin friction drag) and significantly increased L/D. While this reduction over varying flight conditions has been quantified, some leading edge geometries result in adverse increases in peak heat transfer rates. To evaluate the effectiveness of SCAs in reducing drag without paying any penalties in other areas like lifting capacity, heating rates or enclosed volume, the design space was studied in greater detail using MDO methods.
Technical Paper

Non-Reacting and Reacting Flow Analysis in an Aero-Engine Gas Turbine Combustor Using CFD

2007-04-16
2007-01-0916
A gas turbine combustion system is an embodiment of all complexities that engineering equipment can have. The flow is three dimensional, swirling, turbulent, two phase and reacting. The design and development of combustors, until recent past, was an art than science. If one takes the route of development through experiments, it is quite time consuming and costly. Compared to the other two components viz., compressor and turbine, the combustion system is not yet completely amenable to mathematical analysis. A gas turbine combustor is both geometrically and fluid dynamically quite complex. The major challenge a combustion engineer faces is the space constraint. As the combustion chamber is sandwiched between compressor and turbine there is a limitation on the available space. The critical design aspect is in facing the aerodynamic challenges with minimum pressure drop. Accurate mathematical analysis of such a system is next to impossible.
Technical Paper

Facilitating the Energy Optimization of Aircraft Propulsion and Thermal Management Systems through Integrated Modeling and Simulation

2010-11-02
2010-01-1787
An integrated, multidisciplinary environment of a tactical aircraft platform has been created by leveraging the powerful capabilities of both MATLAB/Simulink and Numerical Propulsion System Simulation (NPSS). The overall simulation includes propulsion, power, and thermal management subsystem models, which are integrated together and linked to an air vehicle model and mission profile. The model has the capability of tracking temperatures and performance metrics and subsequently controlling characteristics of the propulsion and thermal management subsystems. The integrated model enables system-level trade studies involving the optimization of engine bleed and power extraction and thermal management requirements to be conducted. The simulation can also be used to examine future technologies and advanced thermal management architectures in order to increase mission capability and performance.
Technical Paper

A Cycloidal Rotor and Airship System for On-Demand Hypercommuting

2016-09-20
2016-01-2026
An architecture is proposed for on-demand rapid commuting across congested-traffic areas. A lighter-than-air (LTA) vehicle provides the efficient loitering and part of the lift, while a set of cycloidal rotors provides the lift for payload as well as propulsion. This combination offers low noise and low downwash. A standardized automobile carriage is slung below the LTA, permitting driveway to driveway boarding and off-loading for a luxury automobile. The concept exploration is described, converging to the above system. The 6-DOF aerodynamic load map of the carriage is acquired using the Continuous-Rotation method in a wind tunnel. An initial design with rear ramp access is modified to have ramps at both ends. The initial design shows a divergence sped in access of 100 mph. An effort to improve the ride quality using yaw stabilizers, failed as the dynamic behavior becomes unstable. The requirements for control surfaces and instrumentation are discussed.
Technical Paper

Pressure Field Evolution on Rotor Blades at High Advance Ratio

2016-09-20
2016-01-2010
The design of advanced rotorcraft requires knowledge of the flowfield and loads on the rotor blade at extreme advance ratios (ratios of the forward flight speed to rotor tip speed). In this domain, strong vortices form below the rotor, and their evolution has a sharp influence on the aero-dynamics loads experienced by the rotor, particularly the loads experienced at pitch links. To understand the load distribution, the surface pressure distribution must be captured. This has posed a severe problem in wind tunnel experiments. In our experiments, a 2-bladed teetering rotor with collective and cyclic pitch controls is used in a low speed subsonic wind tunnel in reverse flow. Stereoscopic particle image velocimetry is used to measure the three component spatial velocity field. Measurement accuracy is now adequate for velocity data, and can be converted to pressure both at and away from the blade surface.
Technical Paper

Yaw Effects on the Narrowband Spectra Above a Delta Wing in Turbulent Flow

2016-09-20
2016-01-2056
Combat aircraft maneuvering at high angles of attack or in landing approach are likely to encounter conditions where the flow over the swept wings is yawed. This paper examines the effect of yaw on the spectra of turbulence above and aft of the wing, in the region where fins and control surfaces are located. Prior work has shown the occurrence of narrowband velocity fluctuations in this region for most combat aircraft models, including those with twin fins. Fin vibration and damage has been traced to excitation by such narrowband fluctuations. The narrowband fluctuations themselves have been traced to the wing surface. The issue in this paper is the effect of yaw on these fluctuations, as well as on the aerodynamic loads on a wing, without including the perturbations due to the airframe.
Technical Paper

The Flying Carpet: Aerodynamic High-Altitude Solar Reflector Design Study

2017-09-19
2017-01-2026
Our concept studies indicate that a set of reflectors floated in the upper atmosphere can efficiently reduce radiant forcing into the atmosphere. The cost of reducing the radiant forcing sufficiently to reverse the current rate of Global Warming, is well within reach of global financial resources. This paper summarizes the overall concept and focuses on one of the reflector concepts, the Flying Carpet. The basic element of this reflector array is a rigidized reflector sheet towed behind and above a solar-powered, distributed electric-propelled flying wing. The vehicle rises above 30,480 m (100,000 ft) in the daytime by solar power. At night, the very low wing loading of the sheets enables the system to stay well above the controlled airspace ceiling of 18,288 m (60,000 ft). The concept study results are summarized before going into technical issues in implementation. Flag instability is studied in initial wind tunnel experiments.
Technical Paper

Aerodynamic Loads on Arbitrary Configurations: Measurements, Computations and Geometric Modeling

2017-09-19
2017-01-2162
This paper brings together three special aspects of bluff-body aeromechanics. Experiments using our Continuous Rotation method have developed a knowledge base on the 6-degree-of-freedom aerodynamic loads on over 50 different configurations including parametric variations of canonical shapes, and several practical shapes of interest. Models are mounted on a rod attached to a stepper motor placed on a 6-DOF load cell in a low speed wind tunnel. The aerodynamic loads are ensemble-averaged as phase-resolved azimuthal variations. The load component variations are obtained as discrete Fourier series for each load component versus azimuth about each of 3 primary axes. This capability has enabled aeromechanical simulation of the dynamics of roadable vehicles slung below rotorcraft. In this paper, we explore the genesis of the loads on a CONEX model, as well as models of a short and long container, using the “ROTCFD” family of unstructured Navier-Stokes solvers.
Technical Paper

Experimental Investigation of Non-Edible Vegetable Oil Operation in a LHR Diesel Engine for Improved Performance

1993-10-01
932846
The main objective of the present research work is to utilise the higher amounts of exhaust energy of the LHR engines. Three vegetable oils(neem oil, rice bran oil and karanji oil) were tested in the low heat rejection engine. An electrical heater was used to heat the thick vegetable oils or the air and the results were studied. the electrical heater energy was correlated with the energy available in the exhaust of the LHR engine, so that the electrical heater can be replaced by a heat exchanger in the actual engine. The three vegetable oils, without heating, indicated a lower brake thermal efficiency of 1-4% when compared with the standard diesel engine. When these thick vegetable oils are heated and used in LHR engines the brake thermal efficiency improves. For every vegetable oil, there is an optimum temperature at which it gives the best performance.
Technical Paper

Experimental and Analytical Studies of Cylinder Head Cooling

1993-04-01
931122
Previous work on the cooling jackets of the Cummins L10 engine revealed flow separation, and low coolant velocities in several critical regions of the cylinder head. The current study involved the use of detailed cooling jacket temperature measurements, and finite element heat transfer analysis to attempt the identification of regions of pure convection, nucleate boiling, and film boiling. Although difficult to detect with certainty, both the measurements and analysis pointed strongly to the presence of nucleate boiling in several regions. Little or no evidence of film boiling was seen, even under very high operating loads. It was thus concluded that the regions of seemingly inadequate coolant flow remained quite effective in controlling cylinder head temperatures. The Cummins L10 upon which this study has focused is an in-line six cylinder, four-stroke direct injection diesel engine, with a displacement of 10 liters.
Journal Article

Performance of Isolated UAV Rotors at Low Reynolds Number

2020-03-10
2020-01-0046
Vertical takeoff and landing vehicle platforms with many small rotors are gaining importance for small UAVs as well as distributed electric propulsion for larger vehicles. To predict vehicle performance, it must be possible to gauge interaction effects. These rotors operate in the less-known regime of low Reynolds number, with different blade geometry. As a first step, two identical commercial UAV rotors from a flight test program are studied in isolation, experimentally and computationally. Load measurements were performed in Georgia Tech’s 2.13 m × 2.74 m wind tunnel. Simulations were done using the RotCFD solver which uses a Navier-Stokes wake computation along with rotor-disc loads calculation using low-Reynolds number blade section data. It is found that in hover, small rotors available in the market vary noticeably in performance at low rotor speeds, the data converging at higher RPM and Reynolds number.
X