Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

Experimental Investigation on Reactivity Controlled Compression Ignition with Oxygenated Alternative Fuel Blends to Reduce Unburned Hydrocarbon Emissions

2021-09-21
2021-01-1203
For controlling oxides of nitrogen (NOx) and particular matter (PM) emissions from diesel engines, various fuel and combustion mode modification strategies are investigated in the past. Low temperature combustion (LTC) is an alternative combustion strategy that reduces NOx and PM emissions through premixed lean combustion. Dual fuel reactivity-controlled compression ignition (RCCI) is a promising LTC strategy with better control over the start and end of combustion because of reactivity and equivalence ratio stratification. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are significantly higher in RCCI, especially at part-load conditions. The present work intends to address this shortcoming by utilizing oxygenated alternative fuels. Considering the limited availability and higher cost, replacing conventional fuels completely with alternative fuels is not feasible.
Technical Paper

Experimental Investigations on the Effects of Water Injection in a Light-Duty Diesel Engine Operated with Biodiesel Fuel

2021-09-21
2021-01-1207
In-cylinder emission control methods for simultaneous reduction of oxides of nitrogen (NOx) and particulate matter (PM) are gaining attention due to stringent emission targets and the higher cost of after-treatment systems. In addition, there is a renewed interest in using carbon-neutral biodiesel due to global warming concerns with fossil diesel. The bi-directional NOx-PM trade-off is reduced to a unidirectional higher NOx emission problem with biodiesel. The effect of water injection with biodiesel with low water quantities is relatively unexplored and is attempted in this investigation to mitigate higher NOx emissions. The water concentrations are maintained at 3, 6, and 9% relative to fuel mass by varying the pulse width of a low-pressure port fuel injector. Considering the corrosive effects of water at higher concentrations, they are maintained below 10% in the present work.
Technical Paper

Transient Emission Characteristics of a Light Duty Commercial Vehicle Powered by a Low Compression Ratio Diesel Engine

2021-09-21
2021-01-1181
Adopting a low compression ratio (LCR) is a viable approach to meet the stringent emission regulations since it can simultaneously reduce the oxides of nitrogen (NOx) and particulate matter (PM) emissions. However, significant shortcomings with the LCR approach include higher unburned hydrocarbon (HC) and carbon monoxide (CO) emissions and fuel economy penalties. Further, poor combustion stability of LCR engines at cold ambient and part load conditions may worsen the transient emission characteristics, which are least explored in the literature. In the present work, the effects of implementing the low compression ratio (LCR) approach in a mass-production light-duty vehicle powered by a single-cylinder diesel engine are investigated with a major focus on transient emission characteristics.
Journal Article

Effect of Engine Parameters on Mixture Stratification in a Wall-Guided GDI Engine - A Quantitative CFD Analysis

2017-03-28
2017-01-0570
Today, GDI engines are becoming very popular because of better fuel economy and low exhaust emissions. The gain in fuel economy in these engines is realized only in the stratified mode of operation. In wall-guided GDI engines, the mixture stratification is realized by properly shaping the combustion chamber. However, the level of mixture stratification varies significantly with engine operating conditions. In this study, an attempt has been made to understand the effect of engine operating parameters viz., compression ratio, engine speed and inlet air pressure on the level of mixture stratification in a four-stroke wall-guided GDI engine using CFD analysis. Three compression ratios of 10.5, 11.5 and 12.5, three engine speeds of 2000, 3000 and 4000 rev/min., and three inlet air pressures of 1, 1.2 and 1.4 bar are considered for the analysis. The CONVERGE software is used to perform the CFD analysis. Simulation is done for one full cycle of the engine.
Technical Paper

Effect of Homogenous-Stratified Mixture Combustion on Performance and Emission Characteristics of a Spray-Guided GDI Engine - A CFD Study

2020-04-14
2020-01-0785
Today, gasoline direct injection (GDI) engine is one of the best strategies to meet the requirement of low pollutant emissions and fuel consumption. Generally, the GDI engine operates in stratified mixture mode at part-load conditions and homogeneous mixture mode at full-load conditions. But, at part-loads, soot emissions are found to be high because of improper air-fuel mixing. To overcome the above issue, a homogenous-stratified mixture (a combination of the overall homogeneous lean mixture with a combustible mixture at the location of the spark plug) is found to be better to reduce soot emissions compared to a stratified mixture mode. It will also help reduce fuel consumption. In this study, the analysis has been done to evaluate the effect of homogeneous-stratified mixture combustion on the performance and emission characteristics of a spray-guided GDI engine under various conditions using computational fluid dynamics (CFD).
Technical Paper

Development and Testing of a Novel Direct Mixture Injection System for a Two Stroke SI Engine

2008-09-09
2008-32-0077
In this work a novel mixture injection system has been developed and tested on a two stroke scooter engine. This system admits finely atomized gasoline directly into the combustion chamber. It employs many components that were individually developed, fabricated, tested and then coupled together. A small compressor driven by the engine sends pressurized air at the correct crank angle through a timing valve. This is connected to a mechanical injector through a high pressure pipe. Fuel is metered into the high pressure pipe using a standard low pressure injector. The developed mixture injection system resulted in considerable improvements in thermal efficiency and reduction in HC emissions over the manifold injection method at all engine outputs. A considerable reduction in short circuiting losses was seen. The highest brake thermal efficiency achieved was 25.5% as against 23% with the manifold injection system.
Technical Paper

Effect of Mixture Distribution on Combustion and Emission Characteristics in a GDI Engine - A CFD Analysis

2017-09-04
2017-24-0036
Mixture distribution in the combustion chamber of gasoline direct injection (GDI) engines significantly affects combustion, performance and emission characteristics. The mixture distribution in the engine cylinder, in turn, depends on many parameters viz., fuel injector hole diameter and orientation, fuel injection pressure, the start of fuel injection, in-cylinder fluid dynamics etc. In these engines, the mixture distribution is broadly classified as homogeneous and stratified. However, with currently available engine parameters, it is difficult to objectively classify the type of mixture distribution. In this study, an attempt is made to objectively classify the mixture distribution in GDI engines using a parameter called the “stratification index”. The analysis is carried out on a four-stroke wall-guided GDI engine using computational fluid dynamics (CFD).
Technical Paper

Effect of FFA of Jatropha Curcas L Oil on Performance and Emissions of a DI Diesel Engine

2012-04-16
2012-01-1318
Oil with high free fatty acid (FFA) content may not be an appropriate contestant for biodiesel production due to poor process yield. The high FFA content (≻1%) will cause soap formation and the separation of products will be exceedingly difficult, and as a result, it has low yield of biodiesel product. In order to increase the process yield, pretreatment setup is required. This involves additional cost and will increase overall fuel price. Hence crude vegetable oils having high FFA can be blended with diesel for effectual employment in diesel engines. In this context, Jatropha Curcas L, non-edible tree-based oil with higher FFA content, can be considered as one of the prominent blending sources for diesel. The primary objective of the present work is to analyze the effect of FFA content of crude Jatropha Curcas L oil (CJO) on performance and emission characteristics of a direct injection (DI) diesel engine.
Technical Paper

Low Dimensional Modeling of Combustion in Spark Ignition Engines

2013-01-09
2013-26-0045
Engine modelling aims at studying the combustion related phenomenon occurring in Internal Combustion (IC) engines. In this regard, a low dimensional mathematical model using first principles has been developed to study Spark Ignited (SI) engines. The resulting equations are Ordinary Differential Equations (ODE) (for volume, pressure, torque, speed and work done) and Partial Differential Equations (PDEs) for temperature and species conservation equations (fuel, CO, CO2, NO). This model utilizes simplified reaction kinetics for the oxidation of fuel in the combustion chamber. A two-step mechanism for the combustion of fuel and the classical Zeldovich Mechanism are used to predict the amount of NO formed during combustion. The model is solved in FORTRAN using LSODE subroutine (for stiff equations) with lumped parameters for thermal properties and diffusion, and invoking the ideal gas assumption.
Technical Paper

Simulation of In-Cylinder Flow and Air-Fuel Interaction of Four and Two-valve DISI Engines - A Comparison

2013-11-27
2013-01-2787
Nowadays, Direct Injection Spark Ignition (DISI) engines are very popular because of their lower fuel consumption and exhaust emissions due to lean stratified mixture operation at most of load conditions. In these engines, achieving mixture stratification plays an important role on performance and emission characteristics of the engine. Also, mixture stratification is mainly dependent on in-cylinder flows and air-fuel interaction, which in turn largely dependent on valve configurations. Therefore, understanding them is very much essential in order to improve the engine performance. In this study, a CFD analysis has been carried out on two- and four-valve four-stroke engines to analyze in-cylinder flows and air-fuel interaction at different conditions. The engines specifications considered here are taken from the literature for which experimental data is available. ‘STAR-CD’ software has been used for the CFD analysis. For meshing, polyhedral trimmed cells have been adopted.
Technical Paper

CFD Prediction of Combustion on Direct Injection Diesel Engine with Two Different Combustion Chamber Configurations

2013-11-27
2013-01-2804
Direct injection diesel engines are used in both light duty and heavy duty vehicles because of higher thermal efficiency compared to SI engines. However, due to only short time available for fuel-air mixing, combustion process depends on proper mixing. As a result, DI Diesel engine emits more NOx and soot into the atmosphere. Therefore, to achieve better combustion with less emission and also to accelerate the fuel-air mixing to improve the combustion, appropriate design of combustion chamber is crucial. Hence, in this work a study has been carried out using CFD to evaluate the effect of combustion chamber configuration on Diesel combustion with two different piston bowls. The two different piston configurations considered in this study are centre bowl on flat piston and pentroof offset bowl piston.
Technical Paper

Evaluation of Low-Pressure EGR System on NOx Reduction Potential of a Supercharged LCR Single-Cylinder Diesel Engine

2022-03-29
2022-01-0447
Supercharging a single-cylinder diesel engine has proved to be a viable methodology to reduce engine-out emissions and increase full-load torque and power. The increased air availability of the supercharger (SC) system helps to inject more fuel quantity that can improve the engine's full-load brake mean effective pressure (BMEP) without elevating soot emissions. However, the increased inlet temperature of the boosted air and the availability of excess oxygen can pose significant challenges to contain oxides of nitrogen (NOx) emissions. Hence, it is important to investigate the potential NOx reduction options in supercharged diesel engines. In the present work, the potential of low-pressure exhaust gas recirculation (LP EGR) was evaluated in a single-cylinder supercharged diesel engine for its benefits in NOx emission reduction and impact on other criteria emissions and brake specific fuel consumption (BSFC).
Technical Paper

Stable Biodiesel-Water Emulsions with a Novel Surfactant to Improve Performance and Reduce Exhaust Emissions of a Light-duty Diesel Engine

2022-08-30
2022-01-1090
Emulsification of biodiesel with water aids in reducing oxides of nitrogen (NOx) and smoke emissions simultaneously whilst improving the engine performance. However, widespread commercial applications of biodiesel-water emulsions require cost-effective surfactants that result in stable emulsions to avoid the corrosive effects of water at high temperatures prevailing in the engine combustion systems. The current investigation explored the effect of adding water to biodiesel at 6 and 12% by weight. A novel, cost-effective surfactant Polyglycerol Polyricinoleate (PGPR), was used to stabilize the emulsions. A magnetic stirrer with a heating facility was utilized to prepare biodiesel-water emulsions that were stable for over five months. The experiments were carried out on a light-duty diesel engine at a constant rated speed and varying load conditions. The results obtained with the emulsions were compared with neat biodiesel as the reference fuel.
Technical Paper

Investigations on Dual Fuel Reactivity Controlled Compression Ignition Engine using Alternative Fuels Produced from Waste Resources

2022-08-30
2022-01-1095
Currently, alternative fuels produced from waste resources are gaining much attention to replace depleting fossil fuels. The disposal of waste plastic poses severe environmental problems across the globe. The energy embodied in waste plastics can be converted into liquid fuel by pyrolysis. The present work explores the possibility of utilizing waste plastic oil (WPO) produced from municipal plastic wastes and waste cooking oil (WCO) biodiesel produced from used cooking oil in a dual fuel reactivity-controlled compression ignition (RCCI) mode. A single-cylinder light-duty diesel engine used for agricultural water pumping applications is modified to run in RCCI through suitable intake and fuel injection systems modifications. Alternative fuel blends, viz. WPO and WCO biodiesel with 20 vol. % in gasoline and diesel is used as a port and direct-injected fuels in RCCI. The premixed ratio and direct-injected fuel timings are optimized to achieve maximum thermal efficiency.
Technical Paper

Reduction of Cycle-by-Cycle Variations and Extension of Lean Limit of Operation in a Small Single Cylinder Gasoline Engine through Valve Timing Changes

2013-04-08
2013-01-0325
Small gasoline four stroke engines used in motorcycle applications run mostly at part load conditions. Here fuel economy and good drivability are the major requirements. In this work, a single cylinder, four stroke, 2 valve gasoline motorcycle engine in which part load performance needs to be improved was taken for investigation. Various factors affecting part load performance were investigated and it was found that high exhaust gas dilution was the cause of high cycle by cycle variations in this engine. Commercial software was used in order to predict exhaust gas dilution levels. Based on the simulation, a set of parameters that lead to low exhaust gas dilution were arrived at. These were implemented and tested on the engine and part load performance characteristics such as combustion stability, brake specific fuel consumption and torque output were found to be improved.
Technical Paper

Boost Port Injection of LPG in a Two - Stroke SI Engine for Reduction in HC Emissions

2013-04-08
2013-01-0584
Short-circuiting of the fuel air mixture during scavenging is the main reason for high fuel consumption and hydrocarbon (HC) emissions in two-stroke SI engines. Though direct injection of the fuel after the closure of ports has advantages, it is costly and complex. In this work, in a 2S-SI, single cylinder, automotive engine, LPG (liquefied Petroleum Gas) was injected through the boost port to reduce short-circuiting losses. A fuel injector was located on one of the boost ports and the air alone was fed through the other transfer and boost ports for scavenging. Experiments were done at 25% and 70% throttle openings with different injection timings and optimal spark timing at 3000 rpm. Boost port injection (BPI) of LPG reduced HC emissions at all conditions as compared to LPG-MI (Manifold Injection). Particularly significant reductions were seen at high throttle conditions and rich mixtures. HC reductions with BPI were 19% and 25% as compared to LPG-MI and gasoline-MI respectively.
Technical Paper

Fuel Injection Strategies for Improving Performance and Reducing Emissions of a Low Compression Ratio Diesel Engine

2021-09-21
2021-01-1166
The present work investigates the effects of lowering the compression ratio (LCR) from 18:1 to 14:1 and optimizing the fuel injection parameters across the operating range of a mass production light-duty diesel engine. The results were quantified for a regulatory Indian drive cycle using a one-dimensional simulation tool. The results show that the LCR approach can simultaneously reduce the oxides of nitrogen (NOx) and soot emissions by 28% and 64%, respectively. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions increased significantly by 305% and 119%, respectively, with a 4.5% penalty in brake specific fuel consumption (BSFC). Hence, optimization of fuel injection parameters specific to LCR operation was attempted. It was evident that advancing the main injection timing and reducing the injection pressure at low-load operating points can significantly help to reduce BSFC, HC and CO emissions with a slight increase in the NOx emissions.
Technical Paper

Experimental Investigations on the Influence of Valve Timing and Multi-Pulse Injection on GCAI Combustion

2019-04-02
2019-01-0967
Gasoline Controlled Auto-Ignition (GCAI) combustion, which can be categorized under Homogeneous Charge Compression Ignition (HCCI), is a low-temperature combustion process with promising benefits such as ultra-low cylinder-out NOx emissions and reduced brake-specific fuel consumption, which are the critical parameters in any modern engine. Since this technology is based on uncontrolled auto-ignition of a premixed charge, it is very sensitive to any change in boundary conditions during engine operation. Adopting real time valve timing and fuel-injection strategies can enable improved control over GCAI combustion. This work discusses the outcome of collaborative experimental research by the partnering institutes in this direction. Experiments were performed in a single cylinder GCAI engine with variable valve timing and Gasoline Direct Injection (GDI) at constant indicated mean effective pressure (IMEP). In the first phase intake and exhaust valve timing sweeps were investigated.
Technical Paper

Comparison of Diesel-Water Emulsion and Water Vapor Induction Methods for Simultaneous Reduction in NOx and Smoke Emissions of a Diesel Engine

2020-08-14
2020-01-5076
Simultaneous reduction of oxides of nitrogen (NOx) and smoke emissions from diesel engines has always been a challenging task. In this research work, a relative comparison of diesel-water emulsion and water vapor induction methods has been made to examine NOx and smoke emissions reduction potential of a light-duty diesel engine. The water concentration was maintained at 6% of the total fuel in the emulsion and 6% of the total incoming air mass in the fumigation method. A stable diesel-water emulsion is prepared using commercially available surfactants, Span 80 and Tween 80 at 10% concentration. The stability of the emulsion was examined by visual inspection. The droplet size was quantified using dynamic light scattering technique and the emulsion was deemed stable for approximately 105 days on storage at room temperature. To generate water vapor in the intake manifold, 20 ultrasonic atomizers are utilized.
Technical Paper

Phenomenological Modeling and Experiments to Investigate the Combined Effects of High Pressure and Multiple Injection Strategies with EGR on Combustion and Emission Characteristics of a CRDI Diesel Engine

2019-01-15
2019-01-0056
Nowadays, due to stringent emission regulations, it is imperative to incorporate modeling efforts with experiments. This paper presents the development of a phenomenological model to investigate the effects of various in-cylinder strategies on combustion and emission characteristics of a common-rail direct-injection (CRDI) diesel engine. Experiments were conducted on a single-cylinder, supercharged engine with displacement volume of 0.55 l at different operating conditions with various combinations of injection pressure, number of injections involving single injection and multiple injections with two injection pulses, and EGR. Data obtained from experiments was also used for model validation. The model incorporated detailed phenomenological aspects of spray growth, air entrainment, droplet evaporation, wall impingement, ignition delay, premixed and mixing-controlled combustion rates, and emissions of nitrogen oxides (NOx) and diesel soot.
X