Refine Your Search

Topic

Author

Search Results

Journal Article

Mode-Dynamic Task Allocation and Scheduling for an Engine Management Real-Time System Using a Multicore Microcontroller

2014-04-01
2014-01-0257
A variety of methodologies to use embedded multicore controllers efficiently has been discussed in the last years. Several assumptions are usually made in the automotive domain, such as static assignment of tasks to the cores. This paper shows an approach for efficient task allocation depending on different system modes. An engine management system (EMS) is used as application example, and the performance improvement compared to static allocation is assessed. The paper is structured as follows: First the control algorithms for the EMS will be classified according to operating modes. The classified algorithms will be allocated to the cores, depending on the operating mode. We identify mode transition points, allowing a reliable switch without neglecting timing requirements. As a next step, it will be shown that a load distribution by mode-dependent task allocation would be better balanced than a static task allocation.
Technical Paper

KNOCK Detection with Series Cylinder Pressure Sensors

2020-04-14
2020-01-1143
Current legal requirements based on new driving cycles like WLTP or RDE focus on elevated power and torque from the engine. The gear ratios are chosen so as to permit low engine speeds to reduce fuel consumption and consequently CO2 emissions by shifting the operating point to higher loads with reduced throttling and friction losses at low engine speeds. To achieve the required acceleration values the engine tends to be operated more frequently close to its power and torque limits. Thus, the knock occurring at the load limits will increase in significance. Today, in series production, knock is detected via structure-borne sound sensors and eliminated via retarded ignition. New low-cost in-cylinder pressure sensors (ICPS) suitable for series-production now permit evaluation of every single combustion cycle, thus detecting knock in the engine control unit (ECU) at all speed and load ratios independent of parasitic noise.
Technical Paper

Routing Methods Considering Security and Real-Time of Vehicle Gateway System

2020-04-14
2020-01-1294
Recently, vehicle networks have increased complexity due to the demand for autonomous driving or connected devices. This increasing complexity requires high bandwidth. As a result, vehicle manufacturers have begun using Ethernet-based communication for high-speed links. In order to deal with the heterogeneity of such networks where legacy automotive buses have to coexist with high-speed Ethernet links vehicle manufacturers introduced a vehicle gateway system. The system uses Ethernet as a backbone between domain controllers and CAN buses for communication between internal controllers. As a central point in the vehicle, the gateway is constantly exchanging vehicle data in a heterogeneous communication environment between the existing CAN and Ethernet networks. In an in-vehicle network context where the communications are strictly time-constrained, it is necessary to measure the delay for such routing task.
Journal Article

Experimental and Numerical Investigation of the Under Hood Flow with Heat Transfer for a Scaled Tractor-Trailer

2012-04-16
2012-01-0107
Aerodynamic design and thermal management are some of the most important tasks when developing new concepts for the flow around tractor-trailers. Today, both experimental and numerical studies are an integral part of the aerodynamic and thermal design processes. A variety of studies have been conducted how the aerodynamic design reduces the drag coefficient for fuel efficiency as well as for the construction of radiators to provide cooling on tractor-trailers. However, only a few studies cover the combined effect of the aerodynamic and thermal design on the air temperature of the under hood flow [8, 13, 16, 17, 20]. The objective of this study is to analyze the heat transfer through forced convection for a scaled Cab-over-Engine (CoE) tractor-trailer model with under hood flow. Different design concepts are compared to provide low under hood air temperature and efficient cooling of the sub components.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

2008-04-14
2008-01-0382
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

The Challenges of Next Generation Automotive Benchmarks

2007-04-16
2007-01-0512
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers whose performance can no longer be measured in MIPS. Instead, their effectiveness is based on a coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, what the designer needs are benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment. This presentation will explore the role of new benchmarks in the development of complex automotive applications.
Technical Paper

Lithium-ion Battery Management Integrating Active Load Balancing

2008-04-14
2008-01-1335
Increasingly stringent requirements to improve fuel economy and reduce emissions are pushing the automotive industry toward more innovative solutions. To fulfill the demand, OEMs are developing hybrid systems with powerful electronics. The key technology is in all cases the battery. It is the most critical and expensive element of hybrid systems. The battery requires special care, as it must supply up to 400 Volts (V) and have a capacity of up to several kilowatt-hours (kWh). This paper will review the main functions of a Lithium-ion (Li-ion) battery management system, including power on/off, charging/discharging, and computation of the state of charge and state of health. In order to increase the battery lifespan, new functions such as active load balancing must be implemented.
Technical Paper

Advanced Gasoline Engine Management Platform for Euro IV & CHN IV Emission Regulation

2008-06-23
2008-01-1704
The increasingly stringent requirements in relation to emission reduction and onboard diagnostics are pushing the Chinese automotive industry toward more innovative solutions and a rapid increase in electronic control performance. To manage the system complexity the architecture will require being well structure on hardware and software level. The paper introduces GEMS-K1 (Gasoline Engine Management System - Kit 1). GEMS-K1 is a platform being compliant with Euro IV emission regulation for gasoline engines. The application software is developed using modeling language, the code is automatically generated from the model. The driver software has a well defined structure including microcontroller abstraction layer and ECU abstraction layer. The hardware is following design rules to be robust, 100% testable and easy to manufacture. The electronic components use the latest innovation in terms of architecture and technologies.
Technical Paper

Managing Automobile Energy and Pollution - Electronics the Ultimate Solution

2008-01-09
2008-28-0026
The number of vehicles in world has been steadily increasing over the years. Asia Pacific is blessed to have the fastest growth rate in the world, with China experiencing over 20% vehicle production growth in the recent and coming years. As India jumps on this explosive bandwagon which could see growth rates higher than China, there is a need to understand the environmental and cost aspects arising from the vast increase of automobiles. The need to protect the environment, combined with the limited resource of oil, has led to the need for more fuel-efficient vehicles with intelligent engine and transmission control systems. This paper/presentation will look into the tough emissions regulations, lower CO2 requirement, different fuels and their efficiency, alternative fuel and the infrastructure to support such a paradigm shift, cost to achieve the desired, and GEMS-K1 (Gasoline Engine Management System - Kit 1) as a solution to meet some of the issues mentioned.
Technical Paper

Automotive Sensors & Sensor Interfaces

2004-03-08
2004-01-0210
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnosis systems push the market for more innovative solutions with rapidly increasing complexity. Hence, the embedded systems that will have to control the automobiles have been developed at such an extent that they are now equivalent in scale and complexity to the most sophisticated avionics systems. This paper will demonstrate the key elements to provide a powerful, scalable and configurable solution that offers a migration pass to evolution and even revolution of automotive Sensors and Sensor interfaces. The document will explore different architectures and partitioning. Sensor technologies such as magnetic field sensors based on the hall effect as well as bulk and surface silicon micro machined sensors will be mapped to automotive applications by examples. Functions such as self-test, self-calibration and self-repair will be developed.
Technical Paper

Digital Knock Signal Conditioning using Fast ADC and DSP

2004-03-08
2004-01-0517
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnosis systems is pushing the market for more innovative solutions with rapidly increasing complexity. Hence, the embedded systems that will have to control the automobiles have been developed at such an extent that they are now equivalent in scale and complexity to the most sophisticated avionics systems. The former analogue filter design is now replaced by digital signal processing. This paper will demonstrate the key elements to provide a powerful, scalable and configurable solution that offers a migration route to evolve and even revolutionize automotive electronics. To illustrate this migration toward digital processing the knock function has been developed. A simple RC filter is used as external anti-aliasing. To get the maximum flexibility the signal is very early converted and processed digitally. The micro-controller has been developed using a three-layered solution.
Technical Paper

Smart IGBT for Advanced Ignition Systems

2001-03-05
2001-01-1220
Increasing fuel costs and emission regulations force the car manufacturers to develop powerful but efficient engines. The 3-liter car (3-liter/100 km fuel consumption → 80 miles/gallon) is one of the slogans. To fulfill these requirements a fully electronic controlled Engine Management is necessary. Carburetor systems are replaced by fuel injection systems. Direct injection for Diesel as well as for gasoline engines is the clear trend for the future. The mechanical throttle systems, used for a long time will not fit to the requirements of direct injection. A DC motor for electronic throttle control in conjunction with λ regulation and exhaust gas recirculation are the key elements for low emission cars. Also the automotive ignition system is in a process of change today.
Technical Paper

Effective System Development Partitioning

2001-03-05
2001-01-1221
In terms of modern technical systems, the automotive sector is characterized by escalating complexity and functionality requirements. The development of embedded control systems has to meet highest demands regarding process-, time- and cost-optimization. Hence, the efficiency of software development becomes a crucial competitive advantage. Systems design engineers need effective tools and methods to achieve exemplary speed and productivity within the development phase. To obtain such tools and methods, semiconductor manufacturers and tool manufacturers must work closely together. Within the joint efforts of ETAS and Infineon, the software tool suite ASCET-SD was enhanced to generate efficient C code for Infineon's TriCore architecture mapped on ETAS's real-time operating system ERCOSEK. The processor interface to application & calibration tools was realized using the ETK probe based on a JTAG/Nexus link at very high bandwidth.
Technical Paper

Diagnostic and Control Systems for Automotive Power Electronics

2001-03-05
2001-01-0075
The recent improvements in automotive electronics have had a tremendous impact on safety, comfort and emissions. But the continuous increase of the volume of electronic equipment in cars (representing more than 25% of purchasing volume) as well as the increasing system complexity represent a new challenge to quality, post-sales customer support and maintenance. Identifying a fault in a complex network of ECUs, where the different functions are getting more and more intricate, is not an easy task. It can be shown that with the levels of reliability common in 1980, an upper-range automobile of today could never function fault-free. On-Board-Diagnostics (OBD) concepts are emerging to assist the maintenance personnel in localizing the source of a problem with high accuracy, reducing the vehicle repair time, repair costs and costs of warranty claims.
Technical Paper

Seamless Solutions for Powertrain Systems

2002-03-04
2002-01-1303
Fuel efficiency and clean combustion engine versus high engine performance - which will increase up to factor 10 in the next 5 years - with less engine displacement are driving more complex engine control systems in today's and future vehicles. The challenge is not only to design a perfect engine, but also to incorporate the right semiconductors. Beside this demand on high sophisticated electronics the demand on cost reduction - especially for small cars - is one driving factor for a smart partitioning. Infineon offers sensors, microcontrollers and power semiconductors for today's engine management platforms and therefore owns the right technologies to manufacture those devices. This opens up the possibility to integrate more functionality in less devices as in today's partitioning or to define electronics to simplify complex control strategies and to optimize the performance of each device.
Technical Paper

Mechatronic Solution for Motor Management

2002-03-04
2002-01-0473
A mechatronic approach to implementing a BLDC motor drive control system is described. The partitioning method used allows the motor power to be scaled from around 100 watts to 1 kilowatt. The chosen approach maps the required electronic functionality to different existing front-end technologies. By drawing on vast experience with back-end technologies, especially chip-on-chip assembly, it is possible to implement a system in a one-package solution. The advantages of each technology are used to achieve a cost-effective, space-saving solution.
Technical Paper

Mechatronic Solution for Electronic Turbocharger

2003-03-03
2003-01-0712
An innovative way of lowering engine fuel consumption is to reduce engine displacement. However, smaller engines featuring reduced swept volume typically exhibit insufficient torque at low engine speeds. Conventional exhaust turbochargers are not able to compensate for this behavior and additionally suffer from the familiar turbo lag. One possible solution may be an electrically assisted turbocharger, with a high-speed motor providing the extra boost at low engine speeds. A critical factor for the efficiency of the concept is the ratio of the electric motor torque and the rotational mass inertia of the rotor. Testbench evaluation shows acceleration times of 0.5 seconds to reach speeds up to 70,000 rpm. Typically, the electrical load of such systems goes up to 3 kW. Target motors are various types of electrically commutated motors such as BLDC, switched reluctance or induction motors.
Technical Paper

An Efficient Test Methodology for Combustion Engine Testing: Methods for Increasing Measurement Quality and Validity at the Engine Test Bench

2017-03-28
2017-01-0604
Improving fuel efficiency while meeting relevant emission limits set by emissions legislation is among the main objectives of engine development. Simultaneously the development costs and development time have to be steadily reduced. For these reasons, the high demands in terms of quality and validity of measurements at the engine test bench are continuously rising. This paper will present a new methodology for efficient testing of an industrial combustion engine in order to improve the process of decision making for combustion-relevant component setups. The methodology includes various modules for increasing measurement quality and validity. Modules like stationary point detection to determine steady state engine behavior, signal quality checks to monitor the signal quality of chosen measurement signals and plausibility checks to evaluate physical relations between several measurement signals ensure a high measurement quality over all measurements.
Technical Paper

μAFS High Resolution ADB/AFS Solution

2016-04-05
2016-01-1410
A cooperation of several research partners supported by the German Federal Ministry of Research and Education proposes a new active matrix LED light source. A multi pixel flip chip LED array is directly mounted to an active driver IC. A total of 1024 pixel can be individually addressed through a serial data bus. Several of these units are integrated in a prototype headlamp to enable advanced light distribution patterns in an evaluation vehicle.
Technical Paper

Extensive Investigation of a Common Rail Diesel Injector Regarding Injection Characteristics and the Resulting Influences on the Dual Fuel Pilot Injection Combustion Process

2016-04-05
2016-01-0780
Natural gas and especially biogas combustion can be seen as one of the key technologies towards climate-neutral energy supply. With its extensive availability, biogas is amongst the most important renewable energy sources in the present energy mix. Today, the use of gaseous fuels is widely established, for example in cogeneration units for combined heat and power generation. In contrast to conventional spark plug ignition, the combustion can also be initialized by a pilot injection. In order to further increase engine efficiency, this article describes the process for a targeted optimization of the pilot fuel injection. One of the crucial points for a more efficient dual fuel combustion process, is to optimize the amount of pilot injection in order to increase overall engine efficiency, and therefore decrease fuel consumption. In this connection, the injection system plays a key role.
X