Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Ford: Driving Electric Car Efficiency

2012-03-29
The Focus Electric is Ford�s first full-featured 5 passenger battery electric vehicle. The engineering team set our sights on achieving best-in-class function and efficiency and was successful with an EPA certified 1XX MPGe and range XXX then the facing competition allowing for a slightly lower capacity battery pack and larger vehicle without customer trade-off. We briefly overview the engineering method and technologies employed to deliver the results as well as sharing some of the functional challenges unique to this type of vehicle. Presenter Charles Gray, Ford Motor Co.
Video

The Future (& Past) of Electrified Vehicles

2011-11-04
The presentation offers a brief history of the electric vehicle and parallels the realities of those early vehicles with the challenges and solutions of the electrified vehicles coming to market today. A technology evolution for every major component of these vehicles has now made this mode of transportation viable. The Focus Electric is Ford's first electric passenger car utilizing the advanced technology developments to meet the needs of electric car buyers in this emerging market. Presenter Charles Gray, Ford Motor Co.
Video

Future Development of EcoBoost Technology

2012-05-10
Combustion engines are typically only 20-30% efficient at part-load operating conditions, resulting in poor fuel economy on average. To address this, LiquidPiston has developed an improved thermodynamics cycle, called the High-Efficiency Hybrid Cycle (HEHC), which optimizes each process (stroke) of the engine operation, with the aim of maximizing fuel efficiency. The cycle consists of: 1) a high compression ratio; 2) constant-volume combustion, and 3) over-expansion. At a modest compression ratio of 18:1, this cycle offers an ideal thermodynamic efficiency of 74%. To embody the HEHC cycle, LiquidPiston has developed two very different rotary engine architectures ? called the ?M? and ?X? engines. These rotary engine architectures offer flexibility in executing the thermodynamics cycle, and also result in a very compact package. In this talk, I will present recent results in the development of the LiquidPiston engines. The company is currently testing 20 and 40 HP versions of the ?M?
Journal Article

Diagnostics Design Process for Developmental Vehicles

2010-04-12
2010-01-0247
In this paper a diagnostic design process is proposed for developmental vehicles where mainstream design process is not well-suited. First a review of current practice in on-board vehicle fault diagnostics design is presented with particular focus on the application of this process to the development of the Ford Escape Hybrid Electric Vehicle (HEV) program and a demonstration Fuel Cell Electric Vehicle (FCEV) program. Based on the review and evaluation of these experiences, a new tool for diagnostics design is proposed that promises to make the design more traceable, to reduce the repetition of work, and to improve understandability and reuse.
Journal Article

Fatigue Behavior of Stainless Steel Sheet Specimens at Extremely High Temperatures

2014-04-01
2014-01-0975
Active regeneration systems for cleaning diesel exhaust can operate at extremely high temperatures up to 1000°C. The extremely high temperatures create a unique challenge for the design of regeneration structural components near their melting temperatures. In this paper, the preparation of the sheet specimens and the test set-up based on induction heating for sheet specimens are first presented. Tensile test data at room temperature, 500, 700, 900 and 1100°C are then presented. The yield strength and tensile strength were observed to decrease with decreasing strain rate in tests conducted at 900 and 1100°C but no strain rate dependence was observed in the elastic properties for tests conducted below 900°C. The stress-life relations for under cyclic loading at 700 and 1100°C with and without hold time are then investigated. The fatigue test data show that the hold time at the maximum stress strongly affects the stress-life relation at high temperatures.
Journal Article

Influence of Test Procedure on Friction Behavior and its Repeatability in Dynamometer Brake Performance Testing

2014-09-28
2014-01-2521
The efforts of the ISO “Test Variability Task Force” have been aimed at improving the understanding and at reducing brake dynamometer test variability during performance testing. In addition, dynamometer test results have been compared and correlated to vehicle testing. Even though there is already a vast amount of anecdotal evidence confirming the fact that different procedures generate different friction coefficients on the same brake corner, the availability of supporting data to the industry has been elusive up to this point. To overcome this issue, this paper focuses on assessing friction levels, friction coefficient sensitivity, and repeatability under ECE, GB, ISO, JASO, and SAE laboratory friction evaluation tests.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Journal Article

Brake Dynamometer Test Variability Part 2- Description of the Influencing Factors

2011-09-18
2011-01-2374
The ISO TC22/SWG2 - Brake Lining Committee established a task force to determine and analyze root causes for variability during dynamometer brake performance testing. SAE paper 2010-01-1697 “Brake Dynamometer Test Variability - Analysis of Root Causes” [1] presents the findings from the phases 1 and 2 of the “Test Variability Project.” The task force was created to address the issue of test variability and to establish possible ways to improve test-to-test and lab-to-lab correlation. This paper presents the findings from phase 3 of this effort-description of factors influencing test variability based on DOE study. This phase concentrated on both qualitative and quantitative description of the factors influencing friction coefficient measurements during dynamometer testing.
Technical Paper

Biaxial Torsion-Bending Fatigue of SAE Axle Shafts

1991-02-01
910164
Variable amplitude torsion, bending, and combined torsion and bending fatigue tests were performed on an axle shaft. The moment inputs used were taken from the respective history channels of a cable log skidder vehicle axle. Testing results indicated that combined variable amplitude loading lives were shorter than the lives of specimens subjected to bending or torsion alone. Calculations using strain rosette readings indicated that principle strains were most active around specific angles but also occurred with lesser magnitudes through a wider angular range. Over the course of a biaxial test, cyclic creep narrowly limited the angles and magnitudes of the principal strains. This limitation was not observed in the calculated principal stress behavior. Simple life predictions made on the measured strain gage histories were non-conservative in most cases.
Technical Paper

High Speed Fuel Injection System for 2-Stroke D.I. Gasoline Engine

1991-02-01
910666
Two-stroke gasoline engines are known to benefit from using in-cylinder fuel injection which improves their ability to meet the strict fuel economy and exhaust emissions requirements. A conventional method of in-cylinder fuel injection involves application of plunger-type positive displacement pumps. Two-stroke engines are usually smaller and lighter than their 4-stroke counterparts of equal power and need a pump that should also be small and light and, preferably, simple in construction. Because a 2-stroke engine fires every crankshaft revolution, its fuel injection pump must run at crankshaft speed (twice the speed of a 4-stroke engine pump). An electronically controlled fuel injection system has been designed to satisfy the needs of a small automotive 2-stroke engine capable of running at speeds of up to 6000 rpm.
Technical Paper

NHTSA Passenger Car Side Impact Dynamic Test Procedure - Test-To-Test Variability Estimates

1991-02-01
910603
A highly controlled six-vehicle crash test program was conducted to provide an estimate of the test-to-test variability of the NHTSA-proposed passenger car dynamic side impact test procedure. The results of this program showed that the rear seat test dummy response measurements are especially sensitive to various parameters of the test procedure. This paper provides estimates of front and rear seated SID dummy response measurement variability in four-door, 1990 Ford Taurus vehicles. Conclusions and recommendations from this controlled crash test program are made to provide guidance to help reduce the test-to-test variability of the test dummy responses.
Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Technical Paper

Oscillating Heat Transfer in Reversing Pipe Flow

1998-02-23
980061
Oscillating heat transfer is a fundamental phenomenon occurring in Stirling machines and IC engines. A group of relevant dimensionless numbers which characterize this problem is identified by dimensional analysis. The convective heat transfer coefficient, or Nusselt number, is a function of the Reynolds number, the Prandtl number, plus the dynamic Reynolds number and the dimensionless amplitude, when compressibility is not considered. The case for compressible fluid is more complicated. An experiential study confirms above analysis and results in a nonlinear longitudinal fluid temperature distribution in the pipe. The history effect is found to affect the heat transfer rate remarkably. A correlation equation for Nusselt number is obtained by multivariate analysis.
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2007-04-16
2007-01-0417
Since 2000, an Aluminum Cosmetic Corrosion task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has existed. The task group has pursued the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. A cooperative program uniting OEM, supplier, and consultants has been created and has been supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Prior to this committee's formation, numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels. However, correlations between these laboratory test results and in-service performance have not been established. Thus, the primary objective of this task group's project was to identify an accelerated laboratory test method that correlates well with in-service performance.
Technical Paper

Regimes of Premixed Turbulent Combustion and Misfire Modeling in SI Engines

1998-10-19
982611
A review of flame kernel growth in SI engines and the regimes of premixed turbulent combustion showed that a misfire model based on regimes of premixed turbulent combustion was warranted[1]. The present study will further validate the misfire model and show that it has captured the dominating physics and avoided extremely complex, yet inefficient, models. Results showed that regimes of turbulent combustion could, indeed, be used for a concept-simple model to predict misfire limits in SI engines. Just as importantly, the entire regimes of premixed turbulent combustion in SI engines were also mapped out with the model.
Technical Paper

Engine Reliability Through Infant Mortality Mitigation: Literature Review

2010-10-06
2010-36-0049
Internal combustion engines are designed to meet the high power, low fuel consumption and also, low exhaust emissions. The engine running conditions is valid the concept that, the expectative is very high because of the variety of operating conditions like cold start, frequent start and stop, time high speed and load, traditional gasoline, mix of gasoline and alcohol and finally, alcohol fuel only. Considering such demand, this paper explains the relationship between the reliability bathtub curve, specifically the "Infant Mortality" portion. The bathtub curve describes failure rate as a function of time. The "Infant Mortality" portion of the curve is the initial section for which the failure (death) rate decreases with time (age). In general, these problems are related to manufacturing aspects or poor design definitions. With development of technology, hard failures, the ones that cause dependability, are becoming rare.
Technical Paper

NVH Testing of Hybrid Electric Powertrains

2001-04-30
2001-01-1543
The purpose of his paper is to further the understanding of NVH test techniques for hybrid electric powertrains. It addresses dynamometer testing specifically. Due to the nature of the hybrid electric function, which includes situations when the engine is not running as well as different ratios of torque for power component combinations, typical testing methods are not adequate. Hybrid electric testing requires unique test conditions, dyno control, instrumentation and analysis. This paper attempts to establish some test standards directed specifically to the data needs of hybrid electric power trains.
Technical Paper

Frictional and Acoustic Behavior of Automotive Interior Polymeric Material Pairs Under Environmental Conditions

2001-04-30
2001-01-1550
As automotive manufacturers continue to increase their use of thermoplastics for interior and exterior components, there is a likelihood of squeaks due to material contacts. To address this issue, Ford's Body Chassis NVH Squeak and Rattle Prevention Engineering Department has developed a tester that can measure friction, and any accompanying audible sound, as a function of sliding velocity, normal load, surface roughness, and environmental factors. The Ford team has been using the tester to address manufacturing plant issues and to develop a database of polymeric material pairings that will be used as a guide for current and future designs to eliminate potential noise concerns. Based upon the database, along with a physical property analysis of the various plastic (viscoelastic) materials used in the interior, we are in the process of developing an analytical model which will be a tool to predict frictional behavior.
Technical Paper

High-Power Battery Testing Procedures and Analytical Methodologies for HEV's

2002-06-03
2002-01-1950
Novel testing procedures and analytical methodologies to assess the performance of hybrid electric vehicle batteries have been developed. Tests include both characterization and cycle life and/or calendar life, and have been designed for both Power Assist and Dual Mode applications. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar- and cycle-life data. Representative performance data and examples of the application of the analytical methodologies including resistance growth, power fade, and cycle- and calendar-life modeling for hybrid electric vehicle batteries are presented.
Technical Paper

Development of a Test Procedure for Quantifying Performance Benefits of Solar Control Glazings on Occupant Comfort

1991-02-01
910536
The evaluation of the performance benefits of solar load reducing glazings using production vehicles is key to the establishment of the product cost/benefit ratio. Climatic windtunnels normally used to evaluate heat gain and vehicle cooldown can not provide true solar simulation. Comparative testing using a test car and a control vehicle must therefore be conducted outside in uncontrollable ambient conditions. The subject paper deals with the development of a testing methodology capable of quantifying thermal performance differences, as low as 5%, resulting from component differences, including glazings. The procedure described includes the use of B & K Thermal Comfort Meters to standardize the refrigeration system performance and to evaluate the rate of vehicle interior cooldown. Data taken during summer test programs in the Southwest for evaluation of heat absorbing glazings will be reviewed.
X