Refine Your Search

Topic

Search Results

Technical Paper

Probabilistic Analysis of Bimodal State Distributions in SCR Aftertreatment Systems

2020-04-14
2020-01-0355
Sensor selection for the control of modern powertrains is a recognised technical challenge. The key question is which set of sensors is best suited for an effective control strategy? This paper addresses the question through probabilistic modelling and Bayesian analysis. By quantifying uncertainties in the model, the propagation of sensor information throughout the model can be observed. The specific example is an abstract model of the slip behaviour of Selective Catalytic Reduction (SCR) DeNOx aftertreatment systems. Due to the ambiguity of the sensor reading, linearization-based approaches including the Extended Kalman Filter, or the Unscented Kalman Filter are not successful in resolving this problem. The stochastic literature suggests approximating these nonlinear distributions using methods such as Markov Chain Monte Carlo (MCMC), which is able in principle to resolve bimodal or multimodal results.
Journal Article

An Investigation into the Wake Structure of Square Back Vehicles and the Effect of Structure Modification on Resultant Vehicle Forces

2011-06-09
2011-37-0015
A large contribution to the aerodynamic drag of a vehicle (30%(1) or more depending on vehicle shape) arises from the low base pressure in the wake region, especially on square-back configurations. A degree of base pressure recovery can be achieved through careful shape optimization, but the flow structures and mechanisms within the wake that cause these base pressure changes are not well understood. A more complete understanding of these mechanisms may provide opportunities for further drag reductions from both passive shape changes and in the future through the use of active flow control technologies. In this work surprisingly large changes in drag and lift coefficients of a square-back style vehicle have been measured as a result of physically small passive modifications. Tests were performed at quarter scale using a simplified vehicle model (Windsor Model) and at full scale using an MPV. The full scale vehicle was tested with and without a flat floor.
Journal Article

Robustness Testing of Real-Time Automotive Systems Using Sequence Covering Arrays

2013-04-08
2013-01-1228
Testing real-time vehicular systems challenges the tester to design test cases for concurrent and sequential input events, emulating unexpected user and usage profiles. The vehicle response should be robust to unexpected user actions. Sequence Covering Arrays (SCA) offer an approach which can emulate such unexpected user actions by generating an optimized set of test vectors which cover all possible t-way sequences of events. The objective of this research was to find an efficient nonfunctional sequence testing (NFST) strategy for testing the robustness of real-time automotive embedded systems measured by their ability to recover (prove-out test) after applying sequences of user and usage patterns generated by combinatorial test algorithms, considered as “noisy” inputs. The method was validated with a case study of an automotive embedded system tested at Hardware-In-the-Loop (HIL) level. The random sequences were able to alter the system functionality observed at the prove-out test.
Technical Paper

Modeling and Control Design of a SOFC-IC Engine Hybrid System

2008-04-14
2008-01-0082
This paper presents a control system design strategy for a novel fuel cell - internal combustion engine hybrid power system. Dynamic control oriented models of the system components are developed. The transient behavior of the system components is investigated in order to determine control parameters and set-points. The analysis presented here is the first step towards development of a controller for this complex system. The results indicate various possibilities for control design and development. A control strategy is discussed to achieve system performance optimization.
Technical Paper

Model Based Design of Robust Vehicle Power Networks

2008-04-14
2008-01-0898
Electrical power requirements for vehicles continue to increase. Future vehicle applications require the development of reliable and robust power supply strategies that operate over various ambient temperatures and driving conditions. Insufficient charge balance is one of the major concerns for conventional lead-acid battery systems when operated with limited charging times during short journeys or extreme climate conditions. For vehicle power supply analysis, a detailed understanding of the operational characteristics of the major components and how they interact as a part of the electric power system, including environmental and road conditions, is essential if the analysis is to aid system optimization. This paper presents a model based technique that enhances the process of vehicle electrical power system design. Vehicle system optimization using virtual prototypes has become critically important as more electrical features are added to future vehicles.
Technical Paper

The Potential of Thermoelectric Generator in Parallel Hybrid Vehicle Applications

2017-03-28
2017-01-0189
This paper reports on an investigation into the potential for a thermoelectric generator (TEG) to improve the fuel economy of a mild hybrid vehicle. A simulation model of a parallel hybrid vehicle equipped with a TEG in the exhaust system is presented. This model is made up by three sub-models: a parallel hybrid vehicle model, an exhaust model and a TEG model. The model is based on a quasi-static approach, which runs a fast and simple estimation of the fuel consumption and CO2 emissions. The model is validated against both experimental and published data. Using this model, the annual fuel saving, CO2 reduction and net present value (NPV) of the TEG’s life time fuel saving are all investigated. The model is also used as a flexible tool for analysis of the sensitivity of vehicle fuel consumption to the TEG design parameters. The analysis results give an effective basis for optimization of the TEG design.
Technical Paper

A Comparison of Four Modelling Techniques for Thermoelectric Generator

2017-03-28
2017-01-0144
The application of state-of-art thermoelectric generator (TEG) in automotive engine has potential to reduce more than 2% fuel consumption and hence the CO2 emissions. This figure is expected to be increased to 5%~10% in the near future when new thermoelectric material with higher properties is fabricated. However, in order to maximize the TEG output power, there are a few issues need to be considered in the design stage such as the number of modules, the connection of modules, the geometry of the thermoelectric module, the DC-DC converter circuit, the geometry of the heat exchanger especially the hot side heat exchanger etc. These issues can only be investigated via a proper TEG model. The authors introduced four ways of TEG modelling which in the increasing complexity order are MATLB function based model, MATLAB Simscape based Simulink model, GT-power TEG model and CFD STAR-CCM+ model. Both Simscape model and GT-Power model have intrinsic dynamic model performance.
Technical Paper

Robust Methodology for Fast Crank Angle Based Temperature Measurement

2016-04-05
2016-01-1072
The paper presents a measurement methodology which combines a fine-wire thermocouple with input reconstruction in order to measure crank angle resolved temperature in an engine air-intake system. Thermocouples that are of practical use in engine experiments tend to have a large time constant which affects measurement accuracy during rapid temperature transients. Input reconstruction methods have previously been applied to thermocouples but have not been specifically used in combination with an ultra-thin uninsulated wire thermocouple to investigate cyclic intake temperature behavior. Accurate measurement results are of interest to improve the validity of many crank-angle resolved engine models. An unshielded thermocouple sensor has been developed which is rigid enough to withstand the aerodynamic forces of the intake air.
Technical Paper

Benefits of Stochastic Optimisation with Grid Price Prediction for Electric Vehicle Charging

2017-03-28
2017-01-1701
The goal of grid friendly charging is to avoid putting additional load on the electricity grid when it is heavily loaded already, and to reduce the cost of charging to the consumer. In a smart metering system, Day Ahead tariff (DA) prices are announced in advance for the next day. This information can be used for a simple optimization control, to select to charge at cheapest times. However, the balance of supply and demand is not fully known in advance and the Real-Time Prices (RTP) are therefore likely to be different at times. There is always a risk of a sudden price change, hence adding a stochastic element to the optimization in turn requiring dynamic control to achieve optimal time selection. A stochastic dynamic program (SDP) controller which takes this problem into account has been made and proven by simulation in a previous paper.
Technical Paper

Accurate Model Based Hardware-in-the-Loop Test for a Windscreen Wiper System

2012-04-16
2012-01-1164
Hardware-in-the-loop (HIL) simulations have long been used to test electronic control units (ECUs) and software in car manufacturers. It provides an effective platform to the rapid development process of the ECU control algorithms and accommodates the added complexity of the plant under control. Accurate Model based HIL simulation (AMHIL) is considered as a most efficient and cost effective way for exploration of new designs and development of new products, particularly in calibration and parameterization of vehicle stability controllers. The work presented in the paper is to develop a mathematical model of a windscreen wiper system for the purpose of conducting HIL vehicle test and eventually to replace the real component with the model for cost cutting and improved test efficiency. The model is developed based on the electro-mechanical engineering principles.
Technical Paper

Design and Comparative Study of Yaw Rate Control Systems with Various Actuators

2011-04-12
2011-01-0952
The vehicle dynamics control systems are traditionally based upon utilizing wheel brakes as actuators. However, there has been recently strong interest in the automotive industry for introduction of other vehicle dynamics actuators, in order to improve the overall vehicle stability, responsiveness, and agility features. This paper considers various actuators such as active rear and central differentials and active front and rear steering, and proposes design of related yaw rate control systems. Different control subsystems such as reference model, feedback and feedforward control, allocation algorithm, and time-varying controller limit are discussed. The designed control systems are verified and compared by computer simulation for double lane change and slalom maneuvers.
Technical Paper

Prediction of Vehicle Interior Sound Pressure Distribution with SEA

2011-05-17
2011-01-1705
Statistical Energy Analysis (SEA) is the standard analytical tool for predicting vehicle acoustic and vibration responses at high frequencies. SEA is commonly used to obtain the interior Sound Pressure Level (SPL) due to each individual noise or vibration source and to determine the contribution to the interior noise through each dominant transfer path. This supports cascading vehicle noise and vibration targets and early evaluation of the vehicle design to effectively meet NVH targets with optimized cost and weight. A common misconception is that SEA is only capable of predicting a general average interior SPL for the entire vehicle cabin and that the differences between different locations such as driver's ear, rear passenger's ear, lower interior points, etc., in the vehicle cannot be analytically determined by an SEA model.
Technical Paper

Review of Selection Criteria for Sensor and Actuator Configurations Suitable for Internal Combustion Engines

2018-04-03
2018-01-0758
This literature review considers the problem of finding a suitable configuration of sensors and actuators for the control of an internal combustion engine. It takes a look at the methods, algorithms, processes, metrics, applications, research groups and patents relevant for this topic. Several formal metric have been proposed, but practical use remains limited. Maximal information criteria are theoretically optimal for selecting sensors, but hard to apply to a system as complex and nonlinear as an engine. Thus, we reviewed methods applied to neighboring fields including nonlinear systems and non-minimal phase systems. Furthermore, the closed loop nature of control means that information is not the only consideration, and speed, stability and robustness have to be considered. The optimal use of sensor information also requires the use of models, observers, state estimators or virtual sensors, and practical acceptance of these remains limited.
Technical Paper

Towards Optimal Performance of a Thermoelectric Generator for Exhaust Waste Heat Recovery from an Automotive Engine

2018-04-03
2018-01-0050
Thermoelectric generator has very quickly become a hot research topic in the last five years because its broad application area and very attractive features such as no moving parts, low maintenance, variety of thermoelectric materials that total together cover a wide temperature range. The biggest disadvantage of the thermoelectric generator is its low conversion efficiency. So that when design and manufacture a thermoelectric generator for exhaust waste heat recovery from an automotive engine, the benefit of fuel consumption from applying a thermoelectric generator would be very sensitive to the weight, the dimensions, the cost and the practical conversion efficiency. Additionally, the exhaust gas conditions vary with the change of engine operating point. This creates a big challenge for the design of the hot side heat exchanger in terms of optimizing the electrical output of the thermoelectric generator during an engine transient cycle.
Technical Paper

Active Grille Shutters Control and Benefits in Medium to Large SUV: A System Engineering Approach

2020-04-14
2020-01-0945
Whilst the primary function of the active grille shutters is to reduce the aerodynamic drag of the car, there are some secondary benefits like improving the warm up time of engine and also retaining engine heat when parked. In turbocharged IC engines the air is compressed (heated) in the turbo and then cooled by a low temperature cooling system before going into the engine. When the air intake temperature exceeds a threshold value, the engine efficiency falls - this drives the need for the cooling airflow across the radiator in normal operation. Airflow is also required to manage the convective heat transfer across various components in the engine bay for its lifetime thermal durability. Grill shutters can also influence the aerodynamic lift balance thus impacting the vehicle dynamics at high speed. The vehicle HVAC system also relies on the condenser in the front heat exchanger pack disposing the waste heat off in the most efficient way.
Technical Paper

An Input Linearized Powertrain Model for the Optimal Control of Hybrid Electric Vehicles

2022-03-29
2022-01-0741
Models of hybrid powertrains are used to establish the best combination of conventional engine power and electric motor power for the current driving situation. The model is characteristic for having two control inputs and one output constraint: the total torque should be equal to the torque requested by the driver. To eliminate the constraint, several alternative formulations are used, considering engine power or motor power or even the ratio between them as a single control input. From this input and the constraint, both power levels can be deduced. There are different popular choices for this one control input. This paper presents a novel model based on an input linearizing transformation. It is demonstrably superior to alternative model forms, in that the core dynamics of the model (battery state of energy) are linear, and the non-linearities of the model are pushed into the inputs and outputs in a Wiener/Hammerstein form.
Technical Paper

Evaluation of Optimal State of Charge Planning Using MPC

2022-03-29
2022-01-0742
Hybrid technologies enable the reduction of noxious tailpipe emissions and conformance with ever-decreasing allowable homologation limits. The complexity of the hybrid powertrain technology leads to an energy management problem with multiple energy sinks and sources comprising the system resulting in a high-dimensional time dependent problem for which many solutions have been proposed. Methods that rely on accurate predictions of potential vehicle operations are demonstrably more optimal when compared to rule-based methodology [1]. In this paper, a previously proposed energy management strategy based on an offline optimization using dynamic programming is investigated. This is then coupled with an online model predictive control strategy to follow the predetermined optimal battery state of charge trajectory prescribed by the dynamic program.
Technical Paper

On the Validity of Steady-State Gasoline Engine Characterization Methodology for Generation of Optimal Calibrations Used in Real World Driving

2022-03-29
2022-01-0579
Vehicle emissions and fuel economy in real-world driving conditions are currently under considerable scrutiny. Key to achieving optimum performance for a given hardware set and control scheme is a calibration that optimizes controller gains such that inputs are scheduled over the operating space to minimize emissions and maximize fuel economy. Generating a suitable calibration requires data that is both precise and accurate, this data is used to generate models that are deployed as part of the calibration optimization process. This paper evaluates the repeatability of typical steady-state measurements used for calibration of engine controllers that will ultimately determine vehicle level emissions for homologation include Real Driving Emissions (RDE). Stabilization requirements as indicated by three different measurements are evaluated and shown to be different within the same experiment, depending on the metric used.
Technical Paper

Quantifying the Information Value of Sensors in Highly Non-Linear Dynamic Automotive Systems

2022-03-29
2022-01-0626
In modern powertrains systems, sensors are critical elements for advanced control. The identification of sensing requirements for such highly nonlinear systems is technically challenging. To support the sensor selection process, this paper proposes a methodology to quantify the information gained from sensors used to control nonlinear dynamic systems using a dynamic probabilistic framework. This builds on previous work to design a Bayesian observer to deal with nonlinear systems. This was applied to a bimodal model of the SCR aftertreatment system. Despite correctly observing the bimodal distribution of the internal Ammonia-NOx Ratio (ANR) state, it could not distinguish which state is the true state. This causes issues for a control engineer who is less interested in how precise a measurement is and more interested in the location within control parameter space. Information regarding the dynamics of the systems is required to resolve the bimodality.
Technical Paper

An Assessment of a Sensor Network Using Bayesian Analysis Demonstrated on an Inlet Manifold

2019-04-02
2019-01-0121
Modern control strategies for internal combustion engines use increasingly complex networks of sensors and actuators to measure different physical parameters. Often indirect measurements and estimation of variables, based off sensor data, are used in the closed loop control of the engine and its subsystems. Thus, sensor fusion techniques and virtual instrumentation have become more significant to the control strategy. With the large volumes of data produced by the increasing number of sensors, the analysis of sensor networks has become more important. Understanding the value of the information they contain and how well it is extracted through uncertainty quantification will also become essential to the development of control architecture. This paper proposes a methodology to quantify how valuable a sensor is relative to the architecture. By modelling the sensor network as a Bayesian network, Bayesian analysis and control metrics were used to assess the value of the sensor.
X