Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Design and Flight Qualification of a Paraffin-Actuated Heat Switch for Mars Surface Applications

2002-07-15
2002-01-2275
The Mars Exploration Rover (MER) flight system uses mechanical, paraffin-actuated heat switches as part of its secondary battery thermal control system. This paper describes the design, flight qualification, and performance of the heat switch. Although based on previous designs by Starsys Research Corporation1,2, the MER mission requirements have necessitated new design features and an extensive qualification program. The design utilizes the work created by the expansion of a paraffin wax by bringing into contact two aluminum surfaces, thereby forming a heat conduction path. As the paraffin freezes and contracts, compression springs separate the surfaces to remove the conduction path. The flight qualification program involved extensive thermal performance, structural, and life testing.
Technical Paper

The Applicability of Past Innovative Concepts to the Technology for New Extremely Large Space Antenna/Telescope Structures

2006-07-17
2006-01-2063
Early development of concepts for space structures up to 1000 meters in size was initiated in the early 1960's and carried through the 1970's. The enabling technologies were self-deployables, on-orbit assembly, and on-orbit manufacturing. Because of the lack of interest due to the astronomical cost associated with advancing the on-orbit assembly and manufacturing technologies, only self-deployable concepts were subsequently pursued. However, for over 50 years, potential users of deployable antennas for radar, radiometers, planar arrays, VLBF and others, are still interested and constantly revising the requirements for larger and higher precision structures. This trend persists today. An excellent example of this trend is the current DARPA/SPO ISAT Program that applies self-deployable structures technology to a 300 meter long active planar array radar antenna. This ongoing program has created a rare opportunity for innovative advancement of state-of-the-art concepts.
Technical Paper

Expanding the Capabilities of the JPL Electronic Nose for an International Space Station Technology Demonstration

2006-07-17
2006-01-2179
An array-based sensing system based on polymer-carbon composite conductometric sensors is under development at JPL for use as an environmental monitor in the International Space Station. Sulfur dioxide has been added to the analyte set for this phase of development. Using molecular modeling techniques, the interaction energy between SO2 and polymer functional groups has been calculated, and polymers selected as potential SO2 sensors. Experiment has validated the model and two selected polymers have been shown to be promising materials for SO2 detection.
Technical Paper

Expanding the Analyte Set of the JPL Electronic Nose to Include Inorganic Species

2005-07-11
2005-01-2880
An array-based sensing system based on 32 polymer/carbon composite conductometric sensors is under development at JPL. Until the present phase of development, the analyte set has focused on organic compounds (common solvents) and a few selected inorganic compounds, notably ammonia and hydrazine. The present phase of JPL ENose development has added two inorganics to the analyte set: mercury and sulfur dioxide. Through models of sensor-analyte response developed under this program coupled with a literature survey, approaches to including these analytes in the ENose target set have been determined.
Technical Paper

Fabrication of laterally coupled InGaAsSb-GaSb-AlGaAsSb DFB laser structures

2000-07-10
2000-01-2305
The development of tunable diode laser systems in the 2 - 5 μm spectral region will have numerous applications for trace gas detection. To date, the development of such systems has been hampered by the difficulties of epitaxial growth, and device processing in the case of the Sb-based materials system. One of the compounding factors in this materials system is the use of aluminum containing compounds in the laser diode cladding layers. This makes the regrowth steps used in traditional lasers very difficult. As an alternative approach we are developing laterally coupled antimonide based lasers structures that do not require the regrowth steps. In this paper, the materials growth, device processing and development of the necessary drive electronics for an antimony based tunable diode laser system are discussed.
Technical Paper

Operation of an Electronic Nose Aboard the Space Shuttle and Directions for Research for a Second Generation Device

2000-07-10
2000-01-2512
A flight experiment to test the operation of an Electronic Nose developed and built at JPL and Caltech was done aboard STS-95 in October-November, 1998. This ENose uses conductometric sensors made of insulating polymer-carbon composite films; it has a volume of 1.7 liters, weighs 1.4 kg including the operating computer and operates on 1.5 W average power. In the flight experiment, the ENose was operated continuously for 6 days and recorded the sensors' response to changes in air in the mid-deck of the orbiter. The ENose had been trained to identify and quantify ten common contaminants at the 24-hour Spacecraft Maximum Allowable Concentration (SMAC) level. Most SMACs are on the order of 10-100 ppm. The experiment was controlled by collecting air samples daily and analyzing them using standard analytical techniques after the flight. The device is microgravity insensitive.
Technical Paper

Thermal Engineering of Mars Entry Non-Ablative Aeroshell Part 1

1999-07-12
1999-01-2198
A transient thermal analysis of a Carbon/Carbon (C/C) Mars Entry Non-Ablative Aeroshell Assembly was performed to determine the maximum temperatures it would reach during a Mars entry. The purpose of this thermal analyses was to (1) determine the maximum temperatures of the 5 layers and the close-out which make up the aerothermal shield and (2) to transmit these temperatures from SINDA/G finite difference format to finite element format in COSMOS/M structures/dynamic models using Technical Alliance Group (TAG) developed SINDA/ G temperature translator software (STT).
Technical Paper

Self-Deployable Foam Antenna Structures for Earth Observation Radiometer Applications

2006-07-17
2006-01-2064
The overall goal of this program was the development of a 10 m. diameter, self-deployable antenna based on an open-celled rigid polyurethane foam system. Advantages of such a system relative to current inflatable or self-deploying systems include high volumetric efficiency of packing, high restoring force, low (or no) outgassing, low thermal conductivity, high dynamic damping, mechanical isotropy, infinite shelf life, and easy fabrication with methods amenable to construction of large structures (i.e., spraying). As part of a NASA Phase II SBIR, Adherent Technologies and its research partners, Temeku Technologies, and NASA JPL/Caltech, conducted activities in foam formulation, interdisciplinary analysis, and RF testing to assess the viability of using open cell polyurethane foams for self-deploying antenna applications.
Journal Article

ATCC 29669 Spores Show Substantial Dry Heat Survivability

2008-06-29
2008-01-1982
Bacillus sp. ATCC 29669 was isolated from microbial fallout in clean rooms during the assembly of the Viking Spacecraft missions to Mars, making it a potential contamination concern for outbound space missions. Spores from this bacterial strain were found to be thirty times more resistant to dry heat than B. atrophaeus. Spore inactivation rates under vacuum controlled humidity were faster than rates obtained under ambient humidity. Inactivation rates for these heat resistant spores are important considerations for planetary protection implementation where temperature, time and humidity conditions are used to estimate the effectiveness of dry heat microbial reduction (DHMR) procedures.
X