Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Combined Longitudinal and Lateral Control for Automated Lane Guidance of Full Drive-by-Wire Vehicles

2015-04-14
2015-01-0321
This paper presents a simultaneous longitudinal and lateral motion control strategy for a full drive-by-wire autonomous vehicle. A nonlinear model predictive control (NMPC) problem is formulated in which the nonlinear prediction model utilizes a spatial transformation to derive the dynamics of the vehicle about the reference trajectory, which facilitates the acquisition of the tracking errors at varying speeds. A reference speed profile generator is adopted by taking account of the road geometry information, such that the lateral stability is guaranteed and the lane guidance performance is improved. Finally, the nonlinear multi-variable optimization problem is simplified by considering only three motion control efforts, which are strictly confined within a convex set and are readily distributed to the four tires of a full drive-by-wire vehicle.
Technical Paper

A Control Algorithm for Electric Power Steering of Tire Blowout Vehicle to Reduce the Impact Torque on Steering Wheel

2013-04-08
2013-01-1239
Impact torque will be generated on the steering wheel when one tire suddenly blows out on high way, which may cause driver's psychological stress and result in driver's certain misoperations on the car. In this paper, the model of tire blowout vehicle was established; the tire blowout was detected based on the change rate of tire pressure, meanwhile, the rack force caused by tire blowout was estimated through a reduce observer; finally the compensation current was figured out to reduce the impact torque on the steering wheel. Results of simulation tests showed that the control strategy proposed in this paper can effectively reduce the impact torque on the steering wheel and reduce the driver's discomfort caused by tire blowout.
Technical Paper

Integrated HIL Test and Development System for Pneumatic ABS/EBS ECU of Commercial Vehicles

2012-09-24
2012-01-2031
The quality of the brake system is a significant safety factor in commercial vehicles on the roads. With the development of automobile technology, the single function ABS system didn't meet active safety requirements of the user. The Electronically Controlled Brake System (EBS) system will replace the ABS system to become the standard safety equipment of commercial vehicles in the near future. EBS can be said an enhanced ABS system, it contains load sensor, brake valve sensor and pressure sensor of chamber, etc, and it is more advantages than ABS. This paper describes a flexible integrated test bench for ABS/EBS Electronic Control Unit (ECU) based on Hardware-In-the-Loop (HIL) simulation technique. It consists of most commercial vehicle pneumatic braking system components (from brake pedal valve, brake caliper to brake chambers), and uses the dSPACE real-time simulation system to communicate to the hardware I/O interface.
Technical Paper

Study on Braking Force Distribution Algorithm for Hybrid Electric Bus Based on EBS

2013-04-08
2013-01-0411
In order to improve the braking energy recovery, a parallel hybrid electric bus simulation model with electric braking system (EBS) was established by co-simulation platform for the TruckSim and Matlab/Simulink in this paper. EBS makes the front and rear shaft braking force arbitrarily distributed, which is more effective to improve the rate of energy recovery and the braking stability. A braking force distribution algorithm for hybrid electric bus based on EBS was designed in this paper. Under the premise to meet the driver's needs and the ECE regulations, this braking force distribution method focuses on making the braking force distribute to the drive shaft to a maximum extent, so as to obtain the maximum energy recovery rate by the utilization of the motor regenerative braking. At last, the simulation in different operating conditions was used to analyze the braking energy utilization and the braking performance based on the simulation model.
Technical Paper

Variable Yaw Rate Gain for Vehicle Steer-by-wire with Joystick

2013-04-08
2013-01-0413
Steering-By-Wire (SBW) system has advantages of advanced vehicle control system, which has no mechanical linkage to control the steering wheel and front wheels. It is possible to control the steering wheel actuator and front wheels actuator steering independently. The goal of this paper is to use a joystick to substitute the conventional steering wheel with typical vehicle SBW system and to study a variable steering ratio design method. A 2-DOF vehicle dynamic reference model is built and focused on the vehicle steering performance of drivers control joystick. By verifying the results with a hardware-in-the-loop simulation test bench, it shows this proposed strategy can improve vehicle maneuverability and comfort.
Technical Paper

Braking Force Distribution and Coordinated Control Algorithm for Hybrid Electric Bus based on EBS

2014-04-01
2014-01-1908
In order to improve the braking energy recovery and ensure the braking comfort, a new type of regenerative braking coordinated control algorithm is designed in this paper. The hierarchical control theory is used to the regenerative braking control algorithm. First, the front axle braking force and rear axle braking force are distributed. Then the rear axle motor braking force and mechanical braking force are distributed. Finally, the dynamic coordinated control strategy is designed to control pneumatic braking system and motor braking system. Aimed at keeping the fluctuation of the total braking force of friction and the regenerative braking force small during braking modes switch, a coordinated controller was designed to control the pneumatic braking system to compensate the error of the motor braking force. Based on Matlab/Simulink platform, a parallel hybrid electric bus simulation model with electric braking system (EBS) was established.
X