Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Design of a Multi-Chamber Silencer for Turbocharger Noise

2009-05-19
2009-01-2048
A multi-chamber silencer is designed by a computational approach to suppress the turbocharger whoosh noise downstream of a compressor in an engine intake system. Due to the significant levels and the broadband nature of the source spanning over 1.5 – 3.5 kHz, three Helmholtz resonators are implemented in series. Each resonator consists of a chamber and a number of slots, which can be modeled as a cavity and neck, respectively. Their target resonance frequencies are tuned using Boundary Element Method to achieve an effective noise reduction over the entire frequency range of interest. The predicted transmission loss of the silencer is then compared with the experimental results from a prototype in an impedance tube setup. In view of the presence of rapid grazing flow, these silencers may be susceptible to whistle-noise generation. Hence, the prototype is also examined on a flow bench at varying flow rates to assess such flow-acoustic coupling.
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

Integration of a Torsional Stiffness Model into an Existing Heavy Truck Vehicle Dynamics Model

2010-04-12
2010-01-0099
Torsional stiffness properties were developed for both a 53-foot box trailer and a 28-foot flatbed control trailer based on experimental measurements. In order to study the effect of torsional stiffness on the dynamics of a heavy truck vehicle dynamics computer model, static maneuvers were conducted comparing different torsional stiffness values to the original rigid vehicle model. Stiffness properties were first developed for a truck tractor model. It was found that the incorporation of a torsional stiffness model had only a minor effect on the overall tractor response for steady-state maneuvers up to 0.4 g lateral acceleration. The effect of torsional stiffness was also studied for the trailer portion of the existing model.
Journal Article

Dynamic Stiffness of Hydraulic Bushing with Multiple Internal Configurations

2013-05-13
2013-01-1924
Fluid filled bushings are commonly used in vehicle suspension and sub-frame systems due to their spectrally-varying and amplitude-dependent properties. Since the literature on this topic is sparse, a controlled laboratory prototype bushing is first designed, constructed, and instrumented. This device provides different internal combination of long and short flow passages and flow restriction elements. Experiments with sinusoidal displacement excitations are conducted on the prototype, and dynamic stiffness spectra along with fluid chamber pressure responses are measured. The frequency-dependent properties of several commonly seen hydraulic bushing designs are experimentally studied and compared under two excitation amplitudes. Further, new linear time-invariant models with one long and one short flow passages (in parallel or series) are proposed along with the limiting cases.
Journal Article

Comparative Assessment of Multi-Axis Bushing Properties Using Resonant and Non-Resonant Methods

2013-05-13
2013-01-1925
Shaped elastomeric joints such as engine mounts or suspension bushings undergo broadband, multi-axis loading; however, in practice, the elastomeric joint properties are often measured at stepped single frequencies (non-resonant test method). This article helps provide insight into multi-axis properties with new benchmark experiments that are designed to permit direct comparison between system resonant and non-resonant identification methods of the dynamic stiffness matrices of elastomeric joints, including multi-axis (non-diagonal) terms. The joints are constructed with combinations of inclined elastomeric cylinders to control non-diagonal terms in the stiffness matrix. The resonant experiment consists of an elastic metal beam end-supported by elastomeric joints coupling the in-plane transverse and longitudinal beam motion.
Journal Article

Transient Response of Hydraulic Bushing with Inertia Track and Orifice-Like Elements

2013-05-13
2013-01-1927
Hydraulic bushings are widely used in vehicle applications, such as suspension and sub-frame systems, for motion control and noise and vibration isolation. To study the dynamic properties of such devices, a controlled laboratory bushing prototype is designed and fabricated. This device has the capability of varying different combinations of long and short flow passages and flow restriction elements. Transient experiments with step-up and step-down excitations are conducted on the prototype, and the transmitted force responses are measured. The transient properties of several commonly seen hydraulic bushing designs are experimentally studied. Analytical models for bushings with different design features are developed based on the linear system theory. System parameters are then estimated for step responses based on theory and measurements. Finally, the linear models are utilized to analyze the step force measurements, from which some nonlinearities of the bushing system are identified.
Journal Article

Objective Evaluation of Interior Sound Quality in Passenger Cars Using Artificial Neural Networks

2013-04-08
2013-01-1704
In this research, the interior noise of a passenger car was measured, and the sound quality metrics including sound pressure level, loudness, sharpness, and roughness were calculated. An artificial neural network was designed to successfully apply on automotive interior noise as well as numerous different fields of technology which aim to overcome difficulties of experimentations and save cost, time and workforce. Sound pressure level, loudness, sharpness, and roughness were estimated by using the artificial neural network designed by using the experiment values. The predicted values and experiment results are compared. The comparison results show that the realized artificial intelligence model is an appropriate model to estimate the sound quality of the automotive interior noise. The reliability value is calculated as 0.9995 by using statistical analysis.
Journal Article

Analysis of Speed-Dependent Vibration Amplification in a Nonlinear Driveline System Using Hilbert Transform

2013-05-13
2013-01-1894
The engine start-up process introduces speed-dependent transient vibration problems in ground vehicle drivelines as the torsional system passes through the critical speeds during the acceleration process. Accordingly, a numerical study is proposed to gain more insights about this transient vibration issue, and the focus is on nonlinear analysis. First, a new nonlinear model of a multi-staged clutch damper is developed and validated by a transient experiment. Second, a simplified nonlinear torsional oscillator model with the multi-staged clutch damper, representing the low frequency dynamics of a typical vehicle driveline, is developed. The flywheel velocity measured during the typical engine start-up process is utilized as an excitation. The envelope function of the speed-dependent response amplification is estimated via the Hilbert transform technique. Finally, the envelope function is effectively utilized to examine the effect of multi-staged clutch damper properties.
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Journal Article

Impact of Intelligent Transportation Systems on Vehicle Fuel Consumption and Emission Modeling: An Overview

2014-01-15
2013-01-9094
Climate change due to greenhouse gas emissions has led to new vehicle emissions standards which in turn have led to a call for vehicle technologies to meet these standards. Modeling of vehicle fuel consumption and emissions emerged as an effective tool to help in developing and assessing such technologies, to help in predicting aggregate vehicle fuel consumption and emissions, and to complement traffic simulation models. The paper identifies the current state of the art on vehicle fuel consumption and emissions modeling and its utilization to test the environmental impact of the Intelligent Transportation Systems (ITS)’ measures and to evaluate transportation network improvements. The study presents the relevant models to ITS in the key classifications of models in this research area. It demonstrates that the trends of vehicle fuel consumption and emissions provided by current models generally do satisfactorily replicate field data trends.
Journal Article

Research on Vibration Isolation of Semi-Active Controlled Hydraulic Engine Mount with Air Spring

2014-04-01
2014-01-0008
Aiming at the abnormal vibration of driver seat of a passenger car in idle condition, vibration acceleration of engine, frame and seat rail was tested to identify vibration sources. Order tracking and spectrogram analysis indicated that the second order self-excitation of engine was the main cause. To solve the problem, semi-active controlled hydraulic engine mount with air spring of which characteristics could shift between a high dynamic stiffness and a low one was applied. Then the structure and principle of the mount with variable characteristics was introduced and control mode was analyzed. Dynamic characteristics were obtained by bench test. With sample mount applied, vibration of seat rail was tested again in multiple vehicle and engine working conditions. Dates showed that abnormal vibration in idle condition was extremely reduced and the mount could also meet the requirement of engine to dynamic stiffness in driving conditions.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Brake Modulation

2014-04-01
2014-01-0079
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An integral part of this System is an Intervention Strategy that uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. Through this strategy, the driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models. This work develops one means to alter the future vehicle states: modulating the driver's brake commands. This control strategy must be considered in relationship to changes in the throttle commands. Three key elements of this strategy are developed in this work.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Throttle Modulation

2014-04-01
2014-01-0105
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models which is the focus of this work. This work develops one means to alter the future vehicle states: modulating the driver's throttle commands. First, changes to the longitudinal force are translated to changes in engine torque based on the current operating state (torque and speed) of the engine.
Journal Article

Design Challenges in the Development of a Large Vehicle Inertial Measurement System

2014-04-01
2014-01-0096
The (Vehicle Inertia Parameter Evaluation Rig) VIPER II is a full vehicle mass and inertia parameter measurement machine. The VIPER II expands upon the capabilities of its predecessor and is capable of measuring vehicles with a mass of up to 45,360 kg (100,000 lb), an increase in capacity of 18,100 kg (40,000 lb). The VIPER II also exceeds its predecessor in both the length and width of vehicles it can measure. The VIPER II's maximum vehicle width is 381 cm (150 in) an increase of 76 cm (30 in) and maximum distance from the vehicle CG to the outer most axle is 648 cm (255 in) an additional 152 cm (60 in) The VIPER II is capable of performing measurements including vehicle CG height, pitch, roll, and yaw moments of inertia and the roll/yaw cross product of inertia. While being able to measure both heavier and larger vehicles, the VIPER II is designed to maintain a maximum error of 3% for all inertia measurements and 1% for CG height.
Journal Article

Robust Semi-Active Ride Control under Stochastic Excitation

2014-04-01
2014-01-0145
Ride control of military vehicles is challenging due to varied terrain and mission requirements such as operating weight. Achieving top speeds on rough terrain is typically considered a key performance parameter, which is always constrained by ride discomfort. Many military vehicles using passive suspensions suffer with compromised performance due to single tuning solution. To further stretch the performance domain to achieving higher speeds on rough roads, semi-active suspensions may offer a wide range of damping possibilities under varying conditions. In this paper, various semi-active control strategies are examined, and improvements have been made, particularly, to the acceleration-driven damper (ADD) strategy to make the approach more robust for varying operating conditions. A seven degrees of freedom ride model and a quarter-car model were developed that were excited by a random road process input modeled using an auto-regressive time series model.
Journal Article

Vehicle Interior Sound Quality Analysis by Using Grey Relational Analysis

2014-04-01
2014-01-1976
In this paper, the relationship was investigated between objective psychoacoustic parameters, A-weighted sound pressure level (SPL) and the results of the subjective evaluation by using grey relational analysis (GRA). The sounds were recorded with eight different passenger cars at four different running conditions. The sound quality indices were calculated, including loudness, sharpness, roughness, fluctuation, and A-weighted SPL. Subjective evaluation was performed by thirty subjects using rating scale method. GRA was compared with traditional correlation analysis, and the comparison shows that some hidden information which could not be found in the traditional correlation analysis was revealed. In order to know the further relationship between fluctuation and subjective evaluation, another subjective evaluation was performed by the same 30 subjects. The result demonstrates that the relationship revealed from GRA is correct.
Journal Article

Tire Traction of Commercial Vehicles on Icy Roads

2014-09-30
2014-01-2292
Safety and minimal transit time are vital during transportation of essential commodities and passengers, especially in winter conditions. Icy roads are the worst driving conditions with the least available friction, leaving valuable cargo and precious human lives at stake. The study investigates the available friction at the tire-ice interface due to changes in key operational parameters. Experimental analysis of tractive performance of tires on ice was carried out indoor, using the terramechanics rig located at the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. The friction-slip ratio curves obtained from indoor testing were inputted into TruckSIM, defining tire behavior for various ice scenarios and then simulating performance of trucks on ice. The shortcomings of simulations in considering the effects of all the operational parameters result in differences between findings of indoor testing and truck performance simulations.
Journal Article

Finite Element Modeling of Tire Transient Characteristics in Dynamic Maneuvers

2014-04-01
2014-01-0858
Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of tire dynamic maneuvers. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a three-dimensional finite element model (FEM) has been developed using the commercial software package ABAQUS. The purpose of this study is to investigate the tire dynamic behavior in multiple case studies in which the transient characteristics are highly involved.
Journal Article

Prediction of the Sound Absorption Performance of Polymer Wool by Using Artificial Neural Networks Model

2014-04-01
2014-01-0889
This paper proposes a new method of predicting the sound absorption performance of polymer wool using artificial neural networks (ANN) model. Some important parameters of the proposed model have been adjusted to best fit the non-linear relationship between the input data and output data. What's more, the commonly used multiple non-linear regression model is built to compare with ANN model in this study. Measurements of the sound absorption coefficient of polymer wool based on transfer function method are also performed to determine the sound absorption performance according to GB/T18696. 2-2002 and ISO10534- 2: 1998 (E) standards. It is founded that predictions of the new model are in good agreement with the experiment results.
X