Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Development of a Fast Procedure for Vehicle Noise Source Quantification

2007-05-15
2007-01-2277
The identification of the contributions of airborne noise sources in vehicles in operational driving conditions is still a cumbersome task. Whereas the measurement of the transfer path from possible noise sources to the observer ear locations is efficient and accurate in most conditions, the source strength identification is still a challenging task. This paper presents the basic concepts of a new source quantification technique based on acoustic pressure measurements close to the operating sources. The main goal of developing a new technique is to achieve a faster and more economic method as compared to existing methods.
Technical Paper

A Novel TPA Method Using Parametric Load Models: Validation on Experimental and Industrial Cases

2009-05-19
2009-01-2165
Despite the fact that Transfer Path Analysis (TPA) is a well known and widely used NVH tool it still has some hindrances, the most significant being the huge measurement time to build the full data model. For this reason the industry is constantly seeking for faster methods. The core concepts of a novel TPA approach have already been published in a paper at the ISMA 2008 Conference in Leuven, Belgium. The key idea of the method is the use of parametric models for the estimation of loads. These parameters are frequency independent as opposed to e.g. the classical inverse force identification method where the loads have to be calculated separately for each frequency step. This makes the method scalable, enabling the engineer to use a simpler model based on a small amount of measurement data for quick troubleshooting or simply increase accuracy by a few additional measurements and using a more complex model.
Technical Paper

Numerical Two-Port Characterization of the Aeroacoustic Propagation Effects in Exhaust Mufflers Including Non-Uniform Mean Flow Effects

2010-06-09
2010-01-1428
One dimensional linear acoustics network models are commonly used for the acoustic design of intake and exhaust systems. These models are advantageous since they allow the characterization of the scattering matrices for individual elements, independent of the upstream or downstream components. For an intake or exhaust assembly, the individual elements can be combined by a simple multiplication of the individual matrices to assess the propagation characteristics of the whole system under consideration. The determination of the scattering matrix coefficients can be carried out in an analytical, numerical or experimental way. Since the analytical methodologies are limited to uniform or simplified mean flow representation and the experimental two-port determination is expensive and time-consuming, a numerical method using the time domain Linearized Euler Equations is proposed in this paper.
Technical Paper

Application of Energy Flow Analysis Focused on Path Visualization into Vehicle Design

2010-10-17
2010-36-0505
The development of new design tools to predict the vibro-acoustic behavior within the vehicle development process is of essential importance to achieve better products in an ever shorter timeframe. In this paper, an energy flow post-processing tool for structural dynamic analysis is presented. The method is based on the conversion of conventional finite element (FE) results into energy quantities corresponding with each of the vehicle subcomponents. Based on the global dynamic system behavior and local subcomponent descriptions, one can efficiently evaluate the energy distribution and analyze the vibro-acoustic behavior in complex structures. By using energy as a response variable, instead of conventional design variables as pressure or velocity, one can obtain important information regarding the understanding of the vibro-acoustic behavior of the system.
Technical Paper

Vibro-Acoustic Characterisation of Lightweight Structures: A Numerical-Experimental Approach

2012-06-13
2012-01-1526
In many industrial applications, such as in the automotive and machine building industry, there is a continuous push towards lightweight materials motivated by material and energy savings. This increased use of lightweight materials, however, can strongly compromise the Noise, Vibration and Harshness (NVH) performance of the final products. Especially in times where the NVH performance not only receives a higher legislative attention, but also becomes a commercial differentiator, this also represents a key point of attention for designers and directs research activities towards new experimental and numerical techniques to accurately predict the NVH performance of lightweight systems as early as possible in the design process. The presented work discusses novel measurement setup, specifically developed for examining the vibro-acoustic behavior of lightweight structures. The test stand consists of a concrete cavity of 0.83 m₃.
Technical Paper

Concepts for Pro-Active Life Cycle Design Support Tools

2000-04-26
2000-01-1502
When categorising the available ecodesign tools according to the methodological design phases and steps, most design for environment tools prove to be analysis oriented and mainly suitable for the final, detailed design phases. This paper emphasises emerging methods allowing the integration of environmental issues earlier in the design process and in a more pro-active way. These methods are based on a context sensitive access to structured guidelines and examples. Finally, the integration of these pro-active tools in a holistic life cycle design system, including also analysis techniques such as life cycle assessment, is shortly described.
Journal Article

A Hybrid Wave Based - Modally Reduced Finite Element Method for the Efficient Analysis of Low- and Mid-frequency Car Cavity Acoustics

2009-05-19
2009-01-2214
This paper presents a newly developed hybrid simulation technique for uncoupled acoustic analysis of interior cavities. This method applies a Wave Based model for a large, geometrically simple portion of the acoustic cavity. The superficial details of the problem domain are modeled using a modally reduced finite element model. The resulting hybrid model benefits from the computational efficiency of the Wave Based Method, while retaining the Finite Element Method's ability to model the actual geometry of the problem in great detail. Application of this approach to the analysis of a moderately simplified acoustic car cavity shows the improved computational efficiency as compared to classical finite element procedures and illustrates the potential of the hybrid method as a powerful tool for the analysis of three-dimensional interior acoustic systems.
X