Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

A Forward Collision Warning System Using Deep Reinforcement Learning

2020-04-14
2020-01-0138
Forward collision warning is one of the most challenging concerns in the safety of autonomous vehicles. A cooperation between many sensors such as LIDAR, Radar and camera helps to enhance the safety. Apart from the importance of having a reliable object detector, the safety system should have requisite capabilities to make reasonable decisions in the moment. In this work, we concentrate on detecting front vehicles of autonomous cars using a monocular camera, beyond only a detection method. In fact, we devise a solution based on a cooperation between a deep object detector and a reinforcement learning method to provide forward collision warning signals. The proposed method models the relation between acceleration, distance and collision point using the area of the bounding box related to the front vehicle. An agent of learning automata as a reinforcement learning method interacts with the environment to learn how to behave in eclectic hazardous situations.
Technical Paper

Design and Analysis of Kettering University’s New Proving Ground, the GM Mobility Research Center

2020-04-14
2020-01-0213
Rapid changes in the automotive industry, including the growth of advanced vehicle controls and autonomy, are driving the need for more dedicated proving ground spaces where these systems can be developed safely. To address this need, Kettering University has created the GM Mobility Research Center, a 21-acre proving ground located in Flint, Michigan at the former “Chevy in the Hole” factory location. Construction of a proving ground on this site represents a beneficial redevelopment of an industrial brownfield, as well as a significant expansion of the test facilities available at the campus of Kettering University. Test facilities on the site include a road course and a test pad, along with a building that has garage space, a conference room, and an indoor observation platform. All of these facilities are available to the students and faculty of Kettering University, along with their industrial partners, for the purpose of engaging in advanced transportation research and education.
Technical Paper

Analysis of a Frontal Impact of a Formula SAE Vehicle

2006-12-05
2006-01-3627
The objective of this study was to determine risk of injury to the driver during a frontal impact in a Formula SAE vehicle. Formula SAE is a collegiate student design competition where every year universities worldwide build and compete with open-wheel formula-style race cars. Formula SAE 2006 rules stipulate the use of an impact attenuator to absorb energy in the event of a frontal impact. These rules mandated an average deceleration not to exceed 20-g from a speed of 7.0 m/s (23 ft/s), but do not specify a specific time or pulse shape of the deceleration. The pulse shapes tested in this study included an early high-g, constant-g, and late high-g pulse. The tests were performed using the deceleration sled at the Kettering University Crash Safety Center. Using industry standard practices, this study examined the driver's risk of injury with regard to neck and femur loads, head and chest accelerations, as well as kinematic analysis using high speed video.
Technical Paper

Effects of Boundary Conditions and Inflation Pressure on the Natural Frequencies and 3D Mode Shapes of a Tire

2017-06-05
2017-01-1905
Tires are one of the major sources of noise and vibration in vehicles. The vibration characteristic of a tire depends on its resonant frequencies and mode shapes. Hence, it is desirable to study how different parameters affect the characteristics of tires. In the current paper, experimental modal tests are performed on a tire in free-free and fixed conditions. To obtain the mode shapes and the natural frequencies, the tire is excited using a mechanical shaker and the response of the tire to the excitation is measured using three roving tri-axial accelerometers. The mode shapes and resonant frequencies of the tire are extracted using LMS PolyMax modal analysis. The obtained mode shapes in the two configurations are compared using Modal Assurance Criterion (MAC) to show how mode shapes of tires change when the tire is moved from a free-free configuration to a fixed configuration. It is shown that some modes of the tire are more sensitive to boundary conditions.
Technical Paper

Blind-Spot Detection and Avoidance Utilizing In-Vehicle Haptic Feedback Force Feedback

2011-04-12
2011-01-0556
Steer-by-wire is a system where there are no mechanical connections between the steering wheel and the tires. With the inception of electric and hybrid cars, steer-by-wire is becoming more common. A steer-by-wire car opens many opportunities for additional feedback on the steering wheel. Providing haptic feedback through the steering wheel will add additional depth and capabilities to make the driving experience safer. In this paper we investigated the effects of force feedback on the steering wheel in order to detect and/or avoid blind spot collisions. Two types of force feedback are examined using a driving simulator: a rumble and a counter steering force. A rumble on the steering wheel can avoid blind-spot accidents by providing feedback to drivers about vehicles in their blind spots. Providing counter steering force feedback can help in the reduction in blind-spot accidents. The results show that adding counter steering force feedback did reduce blind-spot related collisions.
Technical Paper

An Analysis of the Vehicle Dynamics Behind Pure Pursuit and Stanley Controllers

2023-04-11
2023-01-0901
As automated driving becomes more common, simulation of vehicle dynamics and control scenarios are increasingly important for investigating motion control approaches. In this work, a study of the differences between the Pure Pursuit and Stanley autonomous vehicle controllers, based on vehicle dynamics responses, is presented. Both are geometric controllers that use only immediate vehicle states, along with waypoint data, to control a vehicle’s future direction as it proceeds from point to point, and both are among the most popular lateral controllers in use today. The MATLAB Automated Driving Toolbox is employed to implement and virtually test the Pure Pursuit and Stanley lateral controllers in different driving scenarios. These include low intensity scenarios such as city driving, and emergency maneuvers such as the moose test.
Technical Paper

Simulation Study of Vehicle Handling Characteristics on Snowy and Icy Terrain

2023-04-11
2023-01-0902
Safety is considered one of the most important parameters when designing a ground vehicle. The adverse effect of weather on a vehicle can lead to a surge in safety issues and accidents. Several safety assistance systems are available in modern vehicles, which are designed to lessen the negative effects of weather hazards. Although these safety systems can intervene during crucial conditions to avoid accidents, driving a vehicle on snowy or icy terrain can still be a challenging task. Road conditions with the least tire-road friction often results in poor vehicle handling, and without any kind of safety system it can lead to mishaps. With the use of Adams Car software and vehicle dynamics modeling, a realistic relationship between the vehicle and road surface may be established. The simulation can be used to have a better understanding of vehicle handling in snowy and icy conditions, tire-ice interaction, and tire modeling.
Technical Paper

Physical Validation Testing of a Smart Tire Prototype for Estimation of Tire Forces

2018-04-03
2018-01-1117
The safety of ground vehicles is a matter of critical importance. Vehicle safety is enhanced with the use of control systems that mitigate the effect of unachievable demands from the driver, especially demands for tire forces that cannot be developed. This paper presents the results of a smart tire prototyping and validation study, which is an investigation of a smart tire system that can be used as part of these mitigation efforts. The smart tire can monitor itself using in-tire sensors and provide information regarding its own tire forces and moments, which can be transmitted to a vehicle control system for improved safety. The smart tire is designed to estimate the three orthogonal tire forces and the tire aligning moment at least once per wheel revolution during all modes of vehicle operation, with high accuracy. The prototype includes two in-tire piezoelectric deformation sensors and a rotary encoder.
Technical Paper

Investigation and Development of a Slip Model for a Basic Rigid Ring Ride Model

2018-04-03
2018-01-1116
With the recent advances in rapid modeling and rapid prototyping, accurate simulation models for tires are very desirable. Selection of a tire slip model depends on the required frequency range and nonlinearity associated with the dynamics of the vehicle. This paper presents a brief overview of three major slip concepts including “Stationary slip”, “Physical transient slip”, and “Pragmatic transient slip”; tire models use these slip concepts to incorporate tire slip behavior. The review illustrates that there can be no single accurate slip model which could be ideally used for all modes of vehicle dynamics simulations. For this study, a rigid ring based semi-analytical tire model for intermediate frequency (up to 100 Hz) is used.
Technical Paper

Using Digital Image Correlation to Measure Dynamics of Rolling Tires

2018-04-03
2018-01-1217
Vehicles are in contact with the road surface through tires, and the interaction at the tire-road interface is usually the major source of vibrations that is experienced by the passengers in the vehicle. Thus, it is critical to measure the vibrational characteristics of the tires in order to improve the safety and comfort of the passengers and also to make the vehicle quieter. The measurement results can also be used to validate numerical models. In this paper, Digital Image Correlation (DIC) as a non-contact technique is used to measure the dynamics of a racing tire in static and rolling conditions. The Kettering University FSAE car is placed on the dynamometer machine for this experiment. A pair of high-speed cameras is used to capture high-resolution images of the tire in a close-up view. The images are processed using DIC to obtain strain and displacement of the sidewall of the tire during rolling. The experiment is performed for various testing speeds.
Technical Paper

Feasibility Study Using FE Model for Tire Load Estimation

2019-04-02
2019-01-0175
For virtual simulation of the vehicle attributes such as handling, durability, and ride, an accurate representation of pneumatic tire behavior is very crucial. With the advancement in autonomous vehicles as well as the development of Driver Assisted Systems (DAS), the need for an Intelligent Tire Model is even more on the increase. Integrating sensors into the inner liner of a tire has proved to be the most promising way in extracting the real-time tire patch-road interface data which serves as a crucial zone in developing control algorithms for an automobile. The model under development in Kettering University (KU-iTire), can predict the subsequent braking-traction requirement to avoid slip condition at the interface by implementing new algorithms to process the acceleration signals perceived from an accelerometer installed in the inner liner on the tire.
Technical Paper

Cervical Range of Motion Data in Children

2006-04-03
2006-01-1140
The “Range-of Motion of the Cervical Spine of Children” study is a collaboration between Kettering University and McLaren Regional Medical Center in Flint, Michigan to quantify and establish benchmarks of “normal” range of motion (ROM) in children. The results will be analyzed to determine mean and standard deviation of degrees of rotation and used to improve the occupant protection in motor vehicles, sports equipment and benefits of physical therapy. The data will be invaluable in the development of computational models to analyze processes involving children in motion.
Technical Paper

Verification and Validation of a Safety-Critical Steer-By-Wire System Using DO-178B

2006-04-03
2006-01-1447
The application of DO-178B for the verification and validation of the safety-critical aspects of a steer-by-wire sub-system of a vehicle by using a spiral development model is discussed. The project was performed within a capstone design course at Kettering University. Issues including lessons learned regarding requirements, specifications, testing, verification, and validation activities as required by DO-178B are summarized.
Technical Paper

An Architecture for a Safety-Critical Steer-by-Wire System

2004-03-08
2004-01-0714
A hardware and software architecture suitable for a safety-critical steer-by-wire systems is presented. The architecture supports three major failure modes and features several safety protocols and mechanisms. Failures due to component failures, software errors, and human errors are handled by the architecture and safety protocols. A test implementation using replicated communication channels, controllers, sensors, and actuators has been performed. The test implementation uses the CAN protocol, Motorola S12 microcontrollers, and Microchip MCP250XX components with a steering wheel and road wheel simulator. The focus of the paper is on the application level, using system engineering principles which incorporate a holistic approach to achieve safety at various levels.
Technical Paper

Design, Modeling, and Analysis of Heave and Roll Decoupled Suspension Geometry for a Formula Student Prototype

2024-04-09
2024-01-2077
This work aims to present the application of mode coupling to a Formula Student racing vehicle and propose a solution. The major modes of a vehicle are heave, pitch, roll, and warp. All these modes are highly coupled – which means changing suspension rates or geometry will affect all of them – while alleviating some and making others worse characteristics. Decoupling these modes, or at least some of them, would provide more control over suspension setup and more refined race car dynamics for a given layout of the racetrack. This could improve mechanical grip and yield significant performance improvements in closed-circuit racing. If exploited well, this approach could also assist in the operation of the vehicle at an optimal kinematic state of the suspension systems, to gain the best wheel orientations and maximize grip from the tires under the high lateral accelerations and varied excitations seen on a typical road course.
X