Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Human Perception of Seat Vibration Quality Pilot Study

2021-08-31
2021-01-1068
Driving comfort and automotive product quality are strongly associated with the vibration that is transmitted to the occupants of a vehicle at the points of contact to the human body, including the seat, steering wheel, and pedals. Of these three contact locations, the seats have the most general importance, as all occupants of a vehicle experience seat vibration. Particularly relevant to driving comfort is the way in which vehicle occupants perceive seat vibration, which may be different than expected considering sensor measured vibration levels. Much of the interest in seat vibration has been focused on internal combustion engine powertrain vibration, especially idle vibration. However, electrification of vehicles changes the focus from low frequency idle vibration to higher frequency vibration sources.
Technical Paper

Source Noise Isolation during Electric Vehicle Pass-By Noise Testing Using Multiple Coherence

2020-04-14
2020-01-1268
Due to the nearly silent operation of an electric motor, it is difficult for pedestrians to detect an approaching electric vehicle. To address this safety concern, the National Highway Traffic Safety Administration issued the Federal Motor Vehicle Safety Standard (FMVSS) No. 141, “Minimum Sound Requirements for Hybrid and Electric Vehicles”. This FMVSS 141 standard requires the measurement of electric vehicle noise according to certain test protocols; however, performing these tests can be difficult since inconsistent results can occur in the presence of transient background noise. Methods to isolate background noise during static sound measurements have already been established, though these methods are not directly applicable to a pass-by noise test where neither the background noise nor the vehicle itself as it travels past the microphone produce stationary sound signals.
Technical Paper

Enhanced Stability of Transmission Clutch Engagement with Temperature-Dependent ATF Friction

2007-10-29
2007-01-3977
Multiple plate disc clutches are used extensively for shifting gears in automatic transmissions. In the active clutches that engage or disengage during a shift the automatic transmission fluid (ATF) and friction material experience large changes in pressure, P, sliding speed, v, and temperature, T. The coefficient of friction, μ, of the ATF and friction material is a function of these variables so μ = μ(P,v,T) also changes during clutch engagement. These changes in friction coefficient can lead to noise or vibration if the ATF properties and clutch friction material are improperly matched. A theoretical understanding of what causes noise, vibration and harshness (NVH) in shifting clutches is valuable for the development of an ATF suitable for a particular friction material. Here we present a theoretical model that identifies the slope, ∂μ/∂T, of the coefficient of friction with respect to temperature as a major contributor to the damping in a clutch during engagement.
Technical Paper

Investigation of Joint Torque Characteristics for a Mechanical Counter - Pressure Spacesuit

2009-07-12
2009-01-2536
Mechanical counter-pressure (MCP) spacesuit designs have been a promising, but elusive alternative to historical and current gas pressurized spacesuit technology since the Apollo program. One of the important potential advantages of the approach is enhanced mobility as a result of reduced bulk and joint torques, but the literature provides essentially no quantitative joint torque data or quantitative analytical support. Decisions on the value of investment in MCP technology and on the direction of technology development are hampered by this lack of information since the perceived mobility advantages are an important factor. An experimental study of a simple mechanical counter-pressure suit (elbow) hinge joint has been performed to provide some test data and analytical background on this issue to support future evaluation of the technology potential and future development efforts.
Technical Paper

High Speed Measurement of Contact Pressure and Area during Knee-to-Instrument Panel Impact Events Suffered from Frontal Crashes

2001-03-05
2001-01-0174
Numerous human cadaver impact studies have shown that acute injury to the knee, femoral shaft, and hip may be significantly reduced by increasing the contact area over the anterior surface of the knee. Such impact events are common in frontal crashes when the knee strikes the instrument panel (IP). The cadaveric studies show that the injury threshold of the knee-thigh-hip complex increases as the contact area over the knee is likewise increased. Unfortunately, no prior methodology exists to record the spatial and temporal contact pressure distributions in dummy (or cadaver) experiments. Previous efforts have been limited to the use of pressure sensitive film, which only yields a cumulative record of contact. These studies assumed that the cumulative pressure sensitive film image correlated with the peak load, although this has never been validated.
Technical Paper

Transmission Mount Design Considerations for a Longitudinally Mounted Powertrain

2001-04-30
2001-01-1448
The transmission mount in a powertrain mounting system is often a primary path for noise. This is especially the case when the transmission is mounted directly to the body without the benefit of a structural frame or isolation between the bracket and body. Since most transmissions generate frequencies above 150Hz, the transmission mount system becomes a likely noise path for this and higher frequencies. A combination of very stiff transmission bracket and very soft rubber mount between the transmission bracket and the transmission would help this problem. In this paper the development an optimally designed transmission mount for a longitudinally mounted powertrain is presented. The development procedure of such a design considers the transmission mount as part of the total system.
Technical Paper

Numerical Evaluation of A Methanol Fueled Directly-Injected Engine

2002-10-21
2002-01-2702
A numerical study on the combustion of Methanol in a directly injected (DI) engine was conducted. The study considers the effect of the bowl-in-piston (BIP) geometry, swirl ratio (SR), and relative equivalence ratio (λ), on flame propagation and burn rate of Methanol in a 4-stroke engine. Ignition-assist in this engine was accomplished by a spark plug system. Numerical simulations of two different BIP geometries were considered. Combustion characteristics of Methanol under swirl and no-swirl conditions were investigated. In addition, the amount of injected fuel was varied in order to determine the effect of stoichiometry on combustion. Only the compression and expansion strokes were simulated. The results show that fuel-air mixing, combustion, and flame propagation was significantly enhanced when swirl was turned on. This resulted in a higher peak pressure in the cylinder, and more heat loss through the cylinder walls.
Technical Paper

A Characteristic Parameter to Estimate the Optimum Counterweight Mass of a 4-Cylinder In-Line Engine

2002-03-04
2002-01-0486
A dimensionless relationship that estimates the maximum bearing load of a 4-cylinder 4-stroke in-line engine has been found. This relationship may assist the design engineer in choosing a desired counterweight mass. It has been demonstrated that: 1) the average bearing load increases with engine speed and 2) the maximum bearing load initially decreases with engine speed, reaches a minimum, then increases quickly with engine speed. This minimum refers to a transition speed at which the contribution of the inertia force overcomes the contribution of the maximum pressure force to the maximum bearing load. The transition speed increases with an increase of counterweight mass and is a function of maximum cylinder pressure and the operating parameters of the engine.
Technical Paper

Effects of Boundary Conditions and Inflation Pressure on the Natural Frequencies and 3D Mode Shapes of a Tire

2017-06-05
2017-01-1905
Tires are one of the major sources of noise and vibration in vehicles. The vibration characteristic of a tire depends on its resonant frequencies and mode shapes. Hence, it is desirable to study how different parameters affect the characteristics of tires. In the current paper, experimental modal tests are performed on a tire in free-free and fixed conditions. To obtain the mode shapes and the natural frequencies, the tire is excited using a mechanical shaker and the response of the tire to the excitation is measured using three roving tri-axial accelerometers. The mode shapes and resonant frequencies of the tire are extracted using LMS PolyMax modal analysis. The obtained mode shapes in the two configurations are compared using Modal Assurance Criterion (MAC) to show how mode shapes of tires change when the tire is moved from a free-free configuration to a fixed configuration. It is shown that some modes of the tire are more sensitive to boundary conditions.
Technical Paper

Use of a Designed Experiment to Determine the Optimal Method to Join Injection-Molded Parts to Pultrusions

2006-10-31
2006-01-3575
A coupler has been developed to prevent windshield wiper systems from being damaged by excessive loads that can occur when the normal wiping pattern is restricted. The coupler is composed of a pultruded composite rod with injection-molded plastic spherical joints (a.k.a. sockets) attached at either end. The sockets are used to attach the coupler to the crank and rocker of the windshield wiper linkage. Because the loads exerted on a coupler vary in magnitude and direction during a wiping cycle, the joint between the sockets and the pultruded composite rod must be robust. The paradigm for attaching sockets to steel couplers (i.e. over-molding the sockets around holes stamped into the ends of traditional steel couplers) was applied to the pultruded rods, tested, and found to produce inadequate joint strength. This paper details the methodology that was employed to produce and optimize an acceptable means to attach the injection-molded sockets to the pultruded rods.
Technical Paper

Design, Analysis, and Development Testing of Large Hood Plastic Mounted Trim Components

2011-04-12
2011-01-0490
Large hood mounted plastic trim components are subjected to complex and often extreme loading conditions. Typical loading conditions include solar and thermal cycling, as well as road and powertrain induced vibrations, aero lift and buffeting, and mechanical loads such as car wash. For the above components understanding and classifying the typical loading conditions is an essential and important step in achieving long term quality. This paper discusses different approaches to the design, analysis, development, and testing of plastic trim components. Samples of analysis and test results are presented to demonstrate how to identify and prevent the loss of the part function. Some useful guidelines and practices for addressing thermal expansion, dimensional variation, and redundancy in attachments are also discussed.
Technical Paper

Investigation of Airflow Induced Whistle Noise by HVAC Control Doors Utilizing a ‘V-Shape’ Rubber Seal

2011-05-17
2011-01-1615
Doors inside an automotive HVAC module are essential components to ensure occupant comfort by controlling the cabin temperature and directing the air flow. For temperature control, the function of a door is not only to close/block the airflow path via the door seal that presses against HVAC wall, but also control the amount of hot and cold airflow to maintain cabin temperature. To meet the stringent OEM sealing requirement while maintaining a cost-effective product, a “V-Shape” soft rubber seal is commonly used. However, in certain conditions when the door is in the position other than closed which creates a small gap, this “V-Shape” seal is susceptible to the generation of objectionable whistle noise for the vehicle passengers. This nuisance can easily reduce end-customer satisfaction to the overall HVAC performance.
Technical Paper

Designing Axial Flow Fan for Flow and Noise

1999-09-14
1999-01-2817
A comprehensive finite element methodology is developed to predict the compressible flow performance of a non-symmetric 7-blade axial flow fan, and to quantify the source strength and sound pressure levels at any location in the system. The acoustic and flow performances of the fan are predicted simultaneously using a computational aero-acoustic technique combining transient flow analysis and noise propagation. The calculated sound power levels compare favorably with the measured sound power data per AMCA 300-96 code.
Technical Paper

A Non-Contact Technique for Vibration Measurement of Automotive Structures

2019-06-05
2019-01-1503
The automotive and aerospace industries are increasingly using the light-weight material to improve the vehicle performance. However, using light-weight material can increase the airborne and structure-borne noise. A special attention needs to be paid in designing the structures and measuring their dynamics. Conventionally, the structure is excited using an impulse hammer or a mechanical shaker and the response is measured using uniaxial or multi-axial accelerometers to obtain the dynamics of the structure. However, using contact-based transducers can mass load the structure and provide data at a few discrete points. Hence, obtaining the true dynamics of the structure conventionally can be challenging. In the past few years, stereo-photogrammetry and three-dimensional digital image correlation have received special attention in collecting operating data for structural analysis. These non-contact optical techniques provide a wealth of distributed data over the entire structure.
Technical Paper

Structural Vibration and Acoustic Analysis of a 3-Phase AC Induction Motor

2019-06-05
2019-01-1458
This paper aims to study the NVH and acoustic performance of a 3-phase AC induction motor in order to develop an approach to reduce the magnetic component of noise from an electric motor in an electric vehicle (EV). The final goal of this project is to reduce the magnetic component of sound from the motor by making modifications to the end bracket of the motor housing. EVs are being considered the future of mobility mainly due to the fact that they are environment-friendly. As many companies are already investing in this technology, electric drives are set to become extremely popular in the years to come. The heart of an EV is its motor. Modern electric vehicles are quiet, furthermore with the lack of an IC engine to mask most sounds from other components, the sound from the electric motor and other auxiliary parts become more prominent.
Journal Article

Noise, Vibration, and Harshness Considerations for Autonomous Vehicle Perception Equipment

2020-04-14
2020-01-0482
Automakers looking to remake their traditional vehicle line-up into autonomous vehicles, Noise, Vibration, and Harshness (NVH) considerations for autonomous vehicles are soon to follow. While traditional NVH considerations still must be applied to carry-over systems, additional components are required for an autonomous vehicle to operate. These additional components needed for autonomy also require NVH analysis and optimization. Autonomous vehicles rely on a suite of sensors, including Light Detection and Ranging (LiDAR) and cameras placed at optimal points on the vehicle for maximum coverage and utilization. In this study, the NVH considerations of autonomous vehicles are examined, focusing on the additional perception equipment installed in autonomous vehicles.
Journal Article

Preliminary Study of Perceived Vibration Quality for Human Hands

2019-06-05
2019-01-1522
A large body of knowledge exists regarding the effects of vibration on human beings; however, the emphasis is generally on the damaging effects of vibration. Very little information has been published regarding the effect of vibration on perceived consumer product quality. The perceived loudness of a product is quantified using the Fletcher-Munson equal loudness curves, but the equivalent curves for perceived vibration amplitude as a function of amplitude and frequency are not readily available. This “vibration quality” information would be valuable in the design and evaluation of many consumer products, including automobiles. Vibration information is used in the automobile design process where targets for steering wheel, seat track, and pedal vibration are common. For this purpose, the vibration information is considered proprietary and is generally applicable to a narrow frequency range. In this investigation, work paralleling the original Fletcher-Munson study is presented.
Technical Paper

A Methodology for Measurement and Analysis of Head-To- B-Pillar Contact Pressure and Area Response

2001-03-05
2001-01-0718
Government accident statistics show that approximately 35% of all car accident victims suffer an injury to the head and face. Such injuries are common during frontal, side, and rollover accidents as the head may impact the steering wheel, side pillars, windshield, or roof. Further, non-threatening injuries (i.e abrasions) may be suffered due to contact with the deployed airbag, or, in the case of an out-of-position occupant, a deploying airbag. While the forces and accelerations measured internal to the head are known to correlate with serious head injury (i.e. concussion, skull fracture, diffuse axonal injury), it is currently not possible to record how the loads are distributed over the head and face with the current ATD. Ultimately, such data could eventually be used to provide improved resolution as to the probability of superficial, soft tissue damage since past cadaver studies show that the distribution of contact pressures are related to such injuries.
Technical Paper

Data-Driven Modeling of Linear and Nonlinear Dynamic Systems for Noise and Vibration Applications

2023-05-08
2023-01-1078
Data-driven modeling can help improve understanding of the governing equations for systems that are challenging to model. In the current work, the Sparse Identification of Nonlinear Dynamical systems (SINDy) is used to predict the dynamic behavior of dynamic problems for NVH applications. To show the merit of the approach, the paper demonstrates how the equations of motions for linear and nonlinear multi-degree of freedom systems can be obtained. First, the SINDy method is utilized to capture the dynamic behavior of linear systems. Second, the accuracy of the SINDy algorithm is investigated with nonlinear dynamic systems. SINDy can output differential equations that correspond to the data. This method can be used to find equations for dynamical systems that have not yet been discovered or to study current systems to compare with our current understanding of the dynamical system.
Technical Paper

Objective and Perceptual Sound Quality Analysis of Internal Combustion Engine and Electric Vehicles

2024-04-09
2024-01-2716
The sound quality of automotive interiors is one of the critical factors regarding customer satisfaction. As electric vehicles (EVs) rapidly rise in popularity, the known literature on sound qualities of internal combustion engine (ICE) automotive interiors has become less relevant. Because of this, comparing and contrasting 'the sound qualities of EV and ICE vehicles is essential to have the proper foundation for studying automotive noise quality in the future. In this paper, we aim to benchmark the major differences between an EV and an ICE automobile regarding interior sound quality. This study seeks to understand basic sound engineering characteristics and how they differ between the two types of vehicles. We also analyzed the public's preferences when it comes to the two types of cars.
X