Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Science Research and Education Modules for the CGBA Spaceflight Incubator

2007-07-09
2007-01-3188
Several small life sciences research modules were designed to accommodate both scientific research and K-12 educational objectives on the same spaceflight mission. The K-12 educational objectives are accomplished by participating students around the globe and complimented by ground experiments conducted in their own classrooms. The spaceflight research is analyzed by students through image analysis of downlinked video and still images. The science objectives of the mission often require sample return for more detailed sample analysis on ground. Integration of new modules as part of a CGBA Science Insert (CSI) into the CGBA incubator is facilitated through standardized interfaces. Engineering challenges, trades and system architecture designs are presented for the CGBA Incubator and the CSI life sciences habitats currently on board of ISS.
Technical Paper

Microgravity Root Zone Hydration Systems

2000-07-10
2000-01-2510
Accurate root zone moisture control in microgravity plant growth systems is problematic. With gravity, excess water drains along a vertical gradient, and water recovery is easily accomplished. In microgravity, the distribution of water is less predictable and can easily lead to flooding, as well as anoxia. Microgravity water delivery systems range from solidified agar, water-saturated foams, soils and hydroponics soil surrogates including matrix-free porous tube delivery systems. Surface tension and wetting along the root substrate provides the means for adequate and uniform water distribution. Reliable active soil moisture sensors for an automated microgravity water delivery system currently do not exist. Surrogate parameters such as water delivery pressure have been less successful.
Technical Paper

Atmosphere Composition Control of Spaceflight Plant Growth Growth Chambers

2000-07-10
2000-01-2232
Spaceflight plant growth chambers require an atmosphere control system to maintain adequate levels of carbon dioxide and oxygen, as well as to limit trace gas components, for optimum or reproducible scientific performance. Recent atmosphere control anomalies of a spaceflight plant chamber, resulting in unstable CO2 control, have been analyzed. An activated carbon filter, designed to absorb trace gas contaminants, has proven detrimental to the atmosphere control system due to its large buffer capacity for CO2. The latest plant chamber redesign addresses the control anomalies and introduces a new approach to atmosphere control (low leakage rate chamber, regenerative control of CO2, O2, and ethylene).
X