Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Development of Insect Habitat System for Studying Long Duration Circadian Rhythm Changes on Mir Space Station

1997-07-01
972311
A habitat for housing up to 32 Tenebrionid, black body beetles (Trigonoscelis gigas Reitter) has been developed at Ames Research Center for conducting studies to evaluate the effects of long duration spaceflight upon insect circadian timing systems. This habitat, identified as the Beetle Kit, provides an automatically controlled lighting system and activity and temperature recording devices, as well as individual beetle enclosures. Each of the 32 enclosures in a Beetle Kit allows for ad lib movement of the beetle as well as ventilation of the beetle enclosure via an externally operated hand pump. Two Beetle Kits were launched on STS-84 (Shuttle-Mir Mission-06) on May 15, 1997 and were transferred to the Priroda module of the Russian Mir space station on May 18 as part of the NASA/Mir Phase 1 Science Program. Following the Progress collision with Spektr on June 25, the Kits were transferred to the Kristall module. The beetles will remain on Mir for approximately 135 days.
Technical Paper

Assessment of Cognitive Abilities in Simulated Space Ascent Environments

2009-07-12
2009-01-2425
The cognitive abilities of some astronauts are affected during spaceflight. We investigated whether a simulated space flight ascent environment, including vibration and 3.8 Gx ascent forces, would result in cognitive deficits detectable by the WinSCAT test battery. Eleven participants were administered the computerized cognitive test battery, a workload rating questionnaire and a subjective state questionnaire before and after a combination of acceleration plus vibration conditions. The acceleration plus vibration exposure resulted in significant self-reports of physical discomfort but did not significantly affect cognitive test battery scores. We discuss ways in which a cognitive assessment tool could be made more sensitive to subtle cognitive changes relevant to astronaut performance.
Technical Paper

Training Pilots for In-flight Icing: Cognitive Foundations for Effective Learning and Operational Application

2003-06-16
2003-01-2141
Aviation training has remained largely untouched by decades of development in cognitive science. In aviation, people must be trained to perform complicated tasks and make good operational decisions in complex dynamic environments. However, traditional approaches to professional aviation training are not well designed to accomplish this goal. Aviation training has been based mainly on relatively rigid classroom teaching of factual information followed by on-the-job mentoring. This approach tends to compartmentalize knowledge. It is not optimal for teaching operational decision-making, and it is costly in time and personnel. The effectiveness of training can be enhanced by designing programs that support the psychological processes involved in learning, retention, retrieval, and application. By building programs that are informed by current work in cognitive science and that utilize modern technological advances, efficient training programs can be created.
Technical Paper

Liquid Cooling Garment Adaptation to Enhance Surgical Outcomes

2003-07-07
2003-01-2339
Hypothermia is a well documented problem for surgical patients and is historically addressed by the use of a variety of warming aids and devices applied to the patient before, during, and after surgery. Their effectiveness is limited in many surgeries by practical constraints of surgical access, and hypothermia remains a significant concern. Increasing the temperature of the operating room has been proposed as an alternative solution. However, operating room temperatures must be cool enough to limit thermal stress on the surgical team despite the heat transport barriers imposed by protective sterile garments. Space technology in the form of the liquid cooling garment worn by EVA astronauts answers this need. Hamilton Sundstrand Space Systems International (HSSSI) has been working with Hartford Hospital to adapt liquid cooling garment technology for use by surgical teams in order to allow them to work comfortably in warmer operating room environments.
Technical Paper

Development of a Membrane Based Gas-Liquid Separator for the Space Station Water Processor

2001-07-09
2001-01-2357
The Water Processor developed for the International Space Station includes a high temperature catalytic reactor that utilizes oxygen gas to oxidize dissolved chemicals. The effluent from the reactor is a mixture of gases (O2, CO2, N2) and hot water. Since the crew has requested that drinking water does not contain any free gas at body temperature (37.8 °C or 100 °F), a phase separator operating at elevated temperatures is required downstream of the catalytic reactor. For this application, Hamilton Sundstrand Space Systems International (HSSSI) has developed a passive Gas Liquid Separator (GLS) that relies on a positive barrier - a membrane - to extract the free gas from the inlet two-phase mixture. The membrane selected is a hollow fiber hydrophobic asymmetric membrane with pore size in the ultra-filtration range. This paper outlines the challenges in both design and operation that were overcome during the development of this device.
Technical Paper

Potential for Recovery of Plant Macronutrients from Space Habitat Wastes for Salad Crop Production

2001-07-09
2001-01-2350
Crop production in space habitats is currently under consideration as part of an advanced life support system. The scenarios for crop production vary depending on the mission objectives. For a mission scenario such as the International Space Station (ISS), current efforts propose only salad crop production. However in order to grow salad crops, there is a need for plant nutrients (elements) such as N, P, K, Ca, etc., which constitutes about 10% of dry weight of the plant. Nitrogen and potassium are the major elements needed by salad crops and currently require resupply on Station. However, it is feasible that these macronutrients could be recovered through the waste materials generated by the crew. The proposed concepts are non-oxidative and simple in design. This paper considers the potential for reclaiming macronutrients from urine and gray water concentrates from water recovery systems.
Technical Paper

Performance Testing of a New Membrane Evaporator for the Thermoelectric Integrated Membrane Evaporator System (TIMES) Water Processor

2002-07-15
2002-01-2525
The TIMES system was evaluated to determine its ability to process reverse osmosis (RO) brine as one of the Advanced Water Processor steps. Since preliminary testing performed in 1998 showed that the membrane typically used in the process (Nafion 117) offered a very poor ammonia rejection, a search for an alternate membrane exhibiting high ammonia rejection capability was initiated under NASA-JSC funding. This investigation has resulted in the selection of a PolyVinylAlcohol (PVA) composite membrane as a replacement. When processing RO brine and untreated human urine as feeds, the Pervap 2201 membrane showed a 96% ammonia rejection over a large range of ammonia concentration. The water permeation rates in both laboratory-scale and pilot scale testings were also similar to the Nafion. The water permeance of the Pervap 2201 was approximately 7.5 kg/h/m2/atm (1.1 lb/h/m2/psi).
Technical Paper

Development Status of ISS Water Processor Assembly

2002-07-15
2002-01-2363
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) for the International Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene wastewaters. All planned development testing has been completed and this paper provides the status of the development activities and results for the WPA.
Technical Paper

International Space Station Waste Collector Subsystem Risk Mitigation Experiment Design Improvements

2002-07-15
2002-01-2304
The International Space Station Waste Collector Subsystem Risk Mitigation Experiment (ISS WCS RME) was flown as the primary (Shuttle) WCS on Space Shuttle flight STS-104 (ISS-7A) in July 2001, to validate new design enhancements. In general, the WCS is utilized for collecting, storing, and compacting fecal & associated personal hygiene waste, in a zero gravity environment. In addition, the WCS collects and transfers urine to the Shuttle waste storage tank. All functions are executed while controlling odors and providing crew comfort. The ISS WCS previously flew on three Shuttle flights as the Extended Duration Orbiter (EDO) WCS, as it was originally designed to support extended duration Space Shuttle flights up to 30 days in length. Soon after its third flight, the Space Shuttle Program decided to no longer require 30 day extended mission duration capability and provided the EDO WCS to the ISS Program.
Technical Paper

Designing User-Interfaces for the Cockpit: Five Common Design Errors and How to Avoid Them

2002-11-05
2002-01-2968
The efficiency and robustness of pilot-automation interaction is a function of the volume of memorized action sequences required to use the automation to perform mission tasks. This paper describes a model of pilot cognition for the evaluation of the cognitive usability of cockpit automation. Five common cockpit automation design errors are discussed with examples.
Technical Paper

HUD Symbology for Surface Operations: Command Guidance vs. Situation Guidance Formats

2002-11-05
2002-01-3006
This study investigated pilots' taxi performance, situation awareness and workload while taxiing with three different head-up display (HUD) symbology formats: Command-guidance, Situation-guidance and Hybrid. Command-guidance symbology provided the pilot with required control inputs to maintain centerline position; Situation-guidance symbology provided conformal, scene-linked navigation information; while the Hybrid symbology combined elements of both symbologies. Taxi speed, centerline tracking accuracy, workload and situation awareness were assessed. Taxi speed, centerline accuracy, and situation awareness were highest and workload lowest with Situation-guidance and Hybrid symbologies. These results are thought to be due to cognitive tunneling induced by the Command-guidance symbology. The conformal route information of the Situation-guidance and Hybrid HUD formats provided a common reference with the environment, which may have supported better distribution of attention.
Technical Paper

Water Reclamation Technology Development for Future Long Range Missions

1992-07-01
921351
This paper covers the development of computer simulation models of the Vapor Compression Distillation (VCD) process, the Super Critical Water Oxidation (SCWO) process, and two versions of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) process. These process level models have combined into two Integrated Water Reclamation Systems (IWRS). Results from these integrated models, in conjunction with other data sources, have been used to develop a preliminary comparison of the two systems. Also discussed in this paper is the development of a Vapor Phase Catalytic Ammonia Reduction teststand and the development of a new urine analog for use with the teststand and computer models.
Technical Paper

The General Purpose Work Station, A Spacious Microgravity Workbench

1992-07-01
921394
The General Purpose Work Station (GPWS) is a laboratory multi-use facility, as demonstrated during the Spacelab Life Sciences 1 (SLS-1) flight. The unit provided particulate containment under varying conditions, served as an effective work space for manipulating live animals, e.g., rats, served as a containment facility for fixatives, and was proposed for use to conduct in-flight maintenance during connector pin repair. The cabinet has a front door large enough to allow installation of a full-size microscope in-flight and is outfitted with a side window to allow delivery of items into the cabinet without exposure to the spacelab atmosphere. Additional support subsystems include inside cabinet mounting, surgical glove fine manipulations capability, and alternating or direct current power supply for experiment equipment, as will be demonstrated during Spacelab J.
Technical Paper

Development of Water Treatment Systems for Use on NASA Crew Exploration Vehicle (CEV) and Lunar Surface Access Module (LSAM)

2006-07-17
2006-01-2012
NASA is currently developing two new human rated launch systems. They are the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). Both of these spacecraft will require new life support systems to support the crew. These life support systems can also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80% of the mass required to keep a person alive. As a result recycling water offers a high return on investment. Recycling water can also increase mission safety by providing an emergency supply of drinking water. This paper evaluates the potential benefits of two wastewater treatment technologies that have been designed to reduce the mass of the CEV and LSAM missions. For a 3 day CEV mission to the International Space Station (ISS) this approach could reduce the mass required to provide drinking water by 65% when compared to stored water. For an 18 day Lunar mission a mass savings of 70% is possible.
Technical Paper

Development of Experiment Kits for Processing Biological Samples In-Flight on SLS-2

1994-06-01
941288
The Spacelab Life Sciences-2 (SLS-2) mission provided scientists with the unique opportunity of obtaining inflight rodent tissue and blood samples during a 14-day mission flown in October, 1993. In order to successfully obtain these samples, Ames Research Center's Space Life Sciences Payloads Office has developed an innovative, modular approach to packaging the instruments used to obtain and preserve the inflight tissue and blood samples associated with the hematology experiments on SLS-2. The design approach organized the multitude of instruments into 12 different 5x6x1 inch kits which were each used to accomplish a particular experiment functional objective on any given day during the mission. The twelve basic kits included blood processing, isotope and erythropoietin injection, body mass measurement, and microscope slides.
Technical Paper

Microgravity Flight - Accommodating Non-Human Primates

1994-06-01
941287
Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases.
Technical Paper

Characterization of Condensate from the Research Animal Holding Facility (RAHF)

1994-06-01
941506
Life Sciences research on Space Station will utilize rats to study the effects of the microgravity environment on mammalian physiology and to develop countermeasures to those effects for the health and safety of the crew. The animals will produce metabolic water which must be reclaimed to minimize logistics support. The condensate from the Research Animal Holding Facility (RAHF) flown on Spacelab Life Sciences-2 (SLS-2) in October 1993 was used as an analog to determine the type and quantity of constituents which the Space Station (SS) water reclamation system will have to process. The most significant organics present in the condensate were 2-propanol, glycerol, ethylene glycol, 1,2-propanediol, acetic acid, acetone, total proteins, urea and caprolactam while the most significant inorganic was ammonia. Microbial isolates included Xanthomonas, Sphingobacterium, Pseudomonas, Penicillium, Aspergillus and Chrysosporium.
Technical Paper

Vapor Phase Catalytic Ammonia Reduction

1994-06-01
941398
This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon™ soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor.
Technical Paper

The CELSS Antarctic Analog Project and Validation of Assumptions and Solutions Regarding Regenerative Life Support Technologies

1996-07-01
961589
The CELSS Antarctic Analog Project (CAAP) is providing NASA and the National Science Foundation (NSF) with an understanding of the complex and interrelated elements of life support and habitation, both on the Antarctic continent and in future missions to space. CAAP is providing a method for challenging the assumption upon which the application of regenerative life support systems are based and thus is providing a heritage of reliability and dependable function. Currently in the early stages of the project, CAAP is laying a path in addressing system engineering issues, technology selection and integrated operation under a set of relevant and real mission constraints. Recent products include identification of energy as a critical limiting resource in the potential application of regenerative systems. Alternatives to the traditional method of life support system development and energy management have been developed and are being implemented in the CAAP testbed.
Journal Article

Lightweight Contingency Water Recovery System Concept Development

2008-06-29
2008-01-2143
The Lightweight Contingency Water Recovery System (LWC-WRS) harvests water from various sources in or around the Orion spacecraft in order to provide contingency water at a substantial mass savings when compared to stored emergency water supplies. The system uses activated carbon treatment (for urine) followed by forward osmosis (FO). The LWC-WRS recovers water from a variety of contaminated sources by directly processing it into a fortified (electrolyte and caloric) drink. Primary target water sources are urine, seawater, and other on board vehicle waters (often referred to as technical waters). The product drink provides hydration, electrolytes, and caloric requirements for crew consumption. The system hardware consists of a urine collection device containing an activated carbon matrix (Stage 1) and an FO membrane treatment element (or bag) which contains an internally mounted cellulose triacetate membrane (Stage 2).
X