Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Design Methodology for Energy Storage System in Motorsports Using Statistical Analysis of Mission Profile

2022-03-29
2022-01-0662
In recent years, many motorsports have been developing competitions based on electric vehicles. The demanding performance requires the battery pack to have the perfect balance between energy, power, and weight. This research paper presents a systematic methodology for the initial design of the battery pack (size and cell chemistry) by statistically analyzing the characteristics of the mission profile. The power profile for the battery pack of a motorsport vehicle can be estimated by considering the duty cycle of a racing car using the technical and sporting regulations and vehicle parameters. In this paper, many statistical metrics correlated to this power profile have been defined and analyzed (such as the max, mean, and standard deviation of the power profile, the total energy consumed, and the expected heat generation). These metrics have been used to estimate the cell energy and power density requirement and the pack sizing considering the weight constraints.
Journal Article

Physics-Based Equivalent Circuit Model for Lithium-Ion Cells via Reduction and Approximation of Electrochemical Model

2022-03-29
2022-01-0701
Physics-based electrochemical models and empirical Equivalent Circuit Models (ECMs) are well-established and widely used modeling techniques to predict the voltage behavior of lithium-ion cells. Electrochemical models are typically very accurate and require relatively little experimental data to calibrate, but present high mathematical and computational complexity. Conversely, ECMs are more computationally efficient and mathematically simpler, making them well-suited for applications in controls, diagnosis, and state estimation of lithium-ion battery packs. However, the calibration process requires extensive testing to calibrate the parameters of the model over a wide range of operating conditions. This paper bridges the gap between these two classes of models by developing a method to analytically define the ECM parameters starting from an already-calibrated Extended Single-Particle Model (ESPM).
Technical Paper

Co-Simulation Framework for Electro-Thermal Modeling of Lithium-Ion Cells for Automotive Applications

2023-08-28
2023-24-0163
Battery packs used in automotive application experience high-power demands, fast charging, and varied operating conditions, resulting in temperature imbalances that hasten degradation, reduce cycle life, and pose safety risks. The development of proper simulation tools capable of capturing both the cell electrical and thermal response including, predicting the cell’s temperature rise and distribution, is critical to design efficient and reliable battery packs. This paper presents a co-simulation model framework capable of predicting voltage, 2-D heat generation and temperature distribution throughout a cell. To capture the terminal voltage and 2-D heat generation across the cell, the simulation framework employs a high-fidelity electrical model paired with a charge balance model based on the Poisson equation. The 2-D volumetric heat generation provided by the charge balance model is used to predict the temperature distribution across the cell surface using CFD software.
Technical Paper

Comparative Analysis of Protection Systems for DC Power Distribution in Electrified Vehicles

2022-03-29
2022-01-0135
Electric transportation has the potential of mitigating CO2 emissions and reduce fuel needs. One of the challenges for the growth of this industry is limited range and efficiency of the vehicles associated with battery storage systems and electric drive technology. High voltage systems are expected to increase efficiency and then vehicle mileage, however this increases the severity of the fault conditions, especially in case of short circuit. Melting fuse is commonly used for the purpose of protection in electrified vehicles, while it is effective and reliable, there are several shortcomings such as lack of precision, effect of ambient temperature, bulky, interruption time depending on the fault condition etc. Additionally, the on-board DC power distribution system (PDS) is characterized by low impedance, in this environment fuses are not able to limit the fault current leading to damage of electronics and hazard for the battery pack.
Journal Article

Performance Evaluation of Lithium-ion Batteries under Low-Pressure Conditions for Aviation Applications

2023-04-11
2023-01-0504
Electrification is getting more important in the aviation industry with the increasing need for reducing emissions of carbon dioxide and fuel consumption. It is crucial to assess the behavior of Li-Ion batteries at high-altitude conditions to design safe and reliable battery packs. This paper aims at benchmarking the performance of different formats of battery cells (pouch cells and cylindrical cells) in low-pressure environments. A test setup was designed and fabricated to replicate the standard procedure defined by the RTCA DO-311 standard, such as the altitude test and rapid decompression test. During the test voltage, current, temperature, and pressure were monitored, and the evaluation criteria is based on the capacity retention, along with the structural integrity of the cell. From preliminary tests, it was observed that cylindrical cells do not show a significant change in performance at low-pressure conditions thanks to their steel casing.
X