Refine Your Search

Topic

Search Results

Technical Paper

Effect of Flange Radius and Width on the Fatigue Life of Wheel Hub under Cornering Loads

2020-04-14
2020-01-1232
Automotive manufacturers are concerned about the safety of its customers. Safety critical components like wheel hub are designed considering the severe loads generated from various customer usage patterns. Accelerated tests, which are derived from Real World Usage Patterns (RWUP), are conducted at vehicle level to ensure the wheel hub meet the durability targets. Load and strain measurement are done to understand the critical lateral loading undergone by the wheel hub. Measured data is synthesized to drive the duty cycle. Finite Element (FE) Analysis of Wheel end is performed at module level considering measured loads to capture the exact load path in physical test. Simulation results are compared with the measured strain for validating the FE analysis procedure. FE analysis was repeated for different wheel hub designs, combinations of different flange radius (R) and flange width (t), to understand the effect of the two critical dimensions on wheel hub durability.
Technical Paper

Unloaded Synchronizer Wear in Manual Transmission Gearbox

2020-09-25
2020-28-0334
Synchronizers are the most critical parts of a manual transmission. There are classical calculations available for the synchronizer design and studies are available for the normal functioning of synchronizer rings which describes how the synchronizer behaves in the event of gear shifting. The objective of this study is to describe the synchronizer behavior when synchronizers are not functional, i.e., in other gear engaged condition and the rings are free. This study describes the failure mechanism of the unused synchronizer rings which are moving freely in the packaging space. The findings of this synchronizer design cannot be limited only for synchronizer performance and standard durability calculations. To ensure proper function of synchronizer rings and to achieve the required life the external parameters like clearances, lubrication, clutch design for dampening torsional vibration from the engine are to be considered.
Technical Paper

STRATEGIES FOR AUTOMOBILE GEAR MATERIAL SELECTION

2008-01-09
2008-28-0055
Material selection is based on Process such as forging, die-casting, machining, welding and injection moulding and application as type of load for Knife Edges and Pivots, to minimize Thermal Distortion, for Safe Pressure Vessels, Stiff, High Damping Materials, etc. In order for gears to achieve their intended performance, durability and reliability, the selection of a suitable gear material is very important. High load capacity requires a tough, hard material that is difficult to machine; whereas high precision favors materials that are easy to machine and therefore have lower strength and hardness ratings. Gears are made of variety of materials depending on the requirement of the machine. They are made of plastic, steel, wood, cast iron, aluminum, brass, powdered metal, magnetic alloys and many others. The gear designer and user face a myriad of choices. The final selection should be based upon an understanding of material properties and application requirements.
Technical Paper

Application of Dual Density Light Weight Dash Acoustic Insulators in SUVs

2009-05-19
2009-01-2143
In the recent past a lot of emphasis is given for the overall weight reduction of the sound package used in the vehicles. The paper presents a study of one of such materials used in the automotive market. The dash panel is a primary area for the engine noise transmission to the cabin. Hence the material selection of the dash inner acoustic insulation is critical. In the conventional method a barrier (EVA) and a decoupler (foam) is used. In the conventional design the surface weight of the barrier has to be substantially high for the dash insulation to perform effectively and hence adds to more weight. In the present application of light weight material also known as dual density absorbers and barrier is used for the dash acoustic insulator. The study reveals the good acoustic performance of the light weight dash mat in terms of passenger cabin noise reduction and improved sound quality along with weight reduction.
Technical Paper

Novel, Compact and Light Weight Plenum Assembly for Automobiles

2017-07-10
2017-28-1924
Plenum is the part located between the front windshield and the bonnet of an automobile . It is primarily used as an air inlet to the HVAC during fresh air mode operation. It’s secondary functions include water drainage, aesthetic cover to hide the gap between windshield to bonnet, concealing wiper motors and mechanisms etc. The plenum consists mainly two sub parts viz. upper plenum and lower plenum. Conventional plenum design which is found in majority of global OEMs employ a plastic upper plenum and a metal lower plenum which spans across the entire width of engine compartment. This conventional lower plenum is bulky, consumes more packaging space and has more weight. In this paper, we propose a novel design for the plenum lower to overcome above mentioned limitations of the conventional design. This novel design employs a dry and wet box concept for its working and is made up of complete plastic material.
Technical Paper

Deriving the Compressed Accelerated Test Cycle from Measured Road Load Data

2012-04-16
2012-01-0063
Validation of vehicle structure is at the core of reduction of product development time. Robust and accelerated validation becomes an important task. In service the vehicle is subjected to variable loads. These act upon the components that originate from road roughness, manoeuvres and powertrain loads. Majority of the body in white and chassis structural failures are caused due to vertical loading. Measured road load data in test track have variable amplitude histories. These histories often contain a large percentage of small amplitude cycles which are non damaging. This paper describes a systematic approach to derive the compressed load cycle from the measured road load data in order to produce representative and meaningful yet economical load cycle for fatigue simulation. In-house flow was developed to derive the compressed load time history.
Technical Paper

Evaluation of Vehicle Systems Structural Durability Using PSD Based Fatigue Life Approach

2012-04-16
2012-01-0953
In current competitive environment automobile industry is under heavy pressure to reduce time to market. First time right design is an important aspect to achieve the time and cost targets. CAE is a tool which helps designer to come up with first time right design. This also calls for high degree of confidence in CAE simulation results which can only be achieved by undertaking correlation exercises. In automobiles most of the structures are subjected to vibration from dynamic loads. All the dynamic road loads are random in nature and can be very easily expressed in terms of power spectral density functions. In the current scenario structural durability of the parts subjected to vibration is done partially through modal performance and partially though frequency response analysis. The only question that arises is what amplitude to use at what frequency and how to map all the accelerated tests dynamic load frequency spectrum to simulation domain.
Technical Paper

Effect of Steel Wheel Disc Hat Profile and Vent Hole Shape on Fatigue Life in Cornering Test

2021-04-06
2021-01-0934
Automotive steel wheel is a critical component for human safety. For validating steel wheel various tests will be performed at component and vehicle level. Cornering test performed at vehicle level is one of the tests, where wheel will be validated for high cornering loads. Cornering test performed at vehicle level consists of three different events i.e., rotations of vehicle in track1, rotations of vehicle track 2 and rotations of vehicle in track3. As wheel will experience different loading in each of the events of cornering test, correlating the virtual Finite Element Analysis (FEA) with physical test is quite challenging. If in FEA we can predict the damage and life very near to the physical validation, we can create a safe wheel for high cornering loads without any test concerns. Vent hole shape and Hat depth are two important aspects in wheel disc design. Vent hole shape and size will influence the heat dissipation of braking.
Technical Paper

Prediction of Engine Thermal Behavior during Emission Cycle Using 1D Four Point Mass Model

2016-04-05
2016-01-0197
The traditional approach of engine thermal behavior of engine during startup has largely been dependent on experimental studies and high fidelity simulations like CFD. However, these techniques require considerable effort, cost and time. The low fidelity simulations validated with experimental results are becoming more popular due to their ease in handling the several parameters such as cost effectiveness and quick predictive results. A four point mass model of engine thermal behavior during cold start has been developed to study the engine warm up temperature behavior. The four point mass model considers the lumped mass of coolant, mass of engine directly associated with the coolant, mass of engine oil and mass of engine directly associated with the engine oil. The advantage of four point model is to predict the coolant temperature as well as lubricant temperature during the transient warm up cycle of the engine.
Technical Paper

1D Transient Thermal Model of an Automotive Electric Engine Cooling Fan Motor

2016-04-05
2016-01-0214
For the thermal management of an automobile, the induced airflow becomes necessary to enable the sufficient heat transfer with ambient. In this way, the components work within the designed temperature limit. It is the engine-cooling fan that enables the induced airflow. There are two types of engine-cooling fan, one that is driven by engine itself and the other one is electrically driven. Due to ease in handling, reduced power consumption, improved emission condition, electrically operated fan is becoming increasingly popular compared to engine driven fan. The prime mover for electric engine cooling fan is DC motor. Malfunction of DC motor due to overheating will lead to engine over heat, Poor HVAC performance, overheating of other critical components in engine bay. Based upon the real world driving condition, 1D transient thermal model of engine cooling fan motor is developed. This transient model is able to predict the temperature of rotor and casing with and without holes.
Technical Paper

An Alternative Method to Improve the CFD Predictions for Vehicle Front End Flow

2015-01-14
2015-26-0199
In vehicle Front End Flow (FEF) analysis, the basic objective is to predict the mass flow/velocity of air at radiator inlet with constant fan rotation. In general, the Multiple Reference Frame (MRF) model is used to model the fan. The flow velocity distribution at radiator inlet due to fan rotation should be uniform in circumferential direction whereas, it should vary in radial direction depending upon the blade geometry. However, the drawback with MRF model is that, it gives higher velocities near radiator inlet at regions corresponding to the fan blades and lower velocities at other regions, which is not realistic. This issue is more predominant when the vehicle is at low speeds or when radiator is placed at mid or back of the vehicle or the fan is having less number of blades. In order to nullify this uneven velocity distribution at radiator inlet, Mixing Plane (MP) approach was used in addition to the MRF model.
Technical Paper

Structural Evaluation Technique Based on RWUP for Scooter Using RLDA

2014-04-01
2014-01-0749
Scooter segment growth is tremendously increasing in India. The increased competition challenges automotive manufacturers to deliver the high quality and high reliable product to the market. Higher reliability involves increased durability testing which involves time and cost. Stress testing a part of durability is initially conducted on prototype vehicles for structural design validation and then later on production units to ensure its structural integrity. The obtained data from the tests can be used for future structural design improvements. Scooters with small tires, suspension limitations transfers more loads to structure, challenges engineers to design robust structure without compromising on weight much. It is necessary to look at Real World Usage Pattern (RWUP) and to create a stress life cycle block for simulation of accelerated testing, thereby optimizing the testing time and the development costs.
Technical Paper

Practical Considerations in the Airflow Optimization of a Single Cylinder Diesel Engine

2014-04-01
2014-01-1705
The present work is concerned with the design of an optimum air intake system for a single cylinder reciprocating diesel engine. It is a well known fact that air flow rates of a naturally aspirated engine are sensitive to the geometrical dimensions of the pipes that connect the engine to the atmosphere. Hence, tuning intake system dimensions for optimum airflow rates is of great importance. In this scenario simulation tools can be useful for the optimization of intake system. The one dimensional simulation tool AVL BOOST is used to predict air flow rates with different combinations of connecting hose diameters and lengths. Subsequently air flow rates are measured with selected clean hoses on an engine steady state test bench. It is found in the initial tests that the lengths and diameters of optimum hoses deviate from the AVL BOOST predicted optimum geometric dimensions.
Technical Paper

Challenges in Machining Aluminium Transmission Gearbox Housings - a Structured Solution Approach Using Unconventional Means

2016-02-01
2016-28-0211
The paper talks about machining techniques and solution approaches while machining Aluminium grade gearbox housings. Mahindra’s next generation gearbox housings are made totally of Aluminium; along with the higher strength to weight ratio that comes with using Aluminium come highly optimized ribbed structures that aid in achieving the said strength. While machining such Aluminium structures, it is imperative that the clamping forces do not load the component in ways it is not intended to. The paper talks about finish machining and proving out a semi-finished gearbox housing set (front, intermediate plate and rear) on a conventional Horizontal Machining Center (HMC). The input to the machine is the semi-finish housing that is already machined before with stock for finish operations.
Technical Paper

A Comprehensive Study on the Design and Development Methodology of Automotive Steel Wheel Rims Undergoing Highly Transient Cornering Events

2021-04-06
2021-01-0827
Wheel rim is one of the most critical safety parts in a vehicle. Strength in cornering loading is one of the most important durability test requirements for automotive steel wheel rim apart from other loading conditions like vertical and impact loads. Based on the category of vehicle and customer usage pattern, the accelerated cornering test is derived for testing steel wheel rims. The simulation and certification of steel wheel rim for the required dynamic durability testing requirement involves many steps ranging from acceptance criteria derivation to reliably addressing known potential failure zones in steel wheel rims. Nave radius and crown are sensitive to cornering loads, given the pitch circle diameter at the concept stage, the known effects of these key parameters are determined from DOE and used as reliable indicators to arrive at the shape and section of the steel wheel rim.
Technical Paper

Application of Reliability Technique for Developing a Test Methodology to Validate the Engine Mounted Components for Off-Road Applications under Vibration

2017-09-29
2017-01-7004
Vibrational fatigue is a metal fatigue caused by the forced vibrations which are purely random in nature. The phenomenon is predominantly important for the components/systems which are subjected to extreme vibration during its operation. In a vehicle, an engine is the main source of vibration. The vibrational fatigue, therefore, plays a key role in the deterioration of engine mounted components. Multiple test standards and methodologies are available for validating engine mounted parts of an automobile. These might not be appropriate in the case of an off- road vehicle as the vibrational exposure of engine mounted components of an off-road vehicle is entirely different. In the case of an off-road vehicle, the engine mounted components are subjected to a comparatively higher level of vibration for a longer duration of time as compared to the passenger cars.
Technical Paper

Evaluation of Fretting Phenomenon in Gearbox and Allied Failures

2022-03-29
2022-01-0648
This paper takes a review of fretting phenomenon on splines of the engaging gears and corresponding splines on shaft of automotive transmission and how it leads to failure of other components in the gearbox. Fretting is a special wear process which occurs at the contact area of two mating metal surfaces when subject to minute relative oscillating motion under vibration. In automotive gearbox, which is subjected to torsional vibrations of the powertrain, the splines of engaging gears and corresponding shaft may experience fretting, especially when the subject gear pair is not engaged. The wear debris formed under fretting process when oxidizes becomes very hard and more abrasive than base metal. These oxidized wear particles when comes in mesh contact with nearby components like bearings, gears etc. may damage these parts during operation and eventually lead to failure.
Technical Paper

Finite Element Analysis and Correlation with Physical Test of Tractor Hood Bang Endurance Test

2024-01-16
2024-26-0071
Tractors primarily serve agricultural functions but are also employed in various other applications such as loading, construction, and hauling. Tractors comprise several key assembly, including the engine, transmission, front hood assembly, and skid, among others. The hood is a critical assembly of the tractor, enclosing the engine and its associated parts. It is constructed from sheet metal with a 'Class A' surface finish for aesthetic purposes. The Hood is locked using latch mechanism mounted on the tractor chassis. The primary function of the hood is to facilitate the opening and closing of the hood assembly during servicing, and it often undergoes rough handling. Therefore, it becomes imperative to validate the durability of the hood assembly to ensure it can withstand the real-world conditions it encounters during these operations.
Technical Paper

Importance of Casting Soundness in Aluminium Parts for Laser Weld Quality

2024-01-16
2024-26-0191
Light weight and Robust manufacturing technologies are always needed for transformation drive in the Automotive industry for the next-generation vehicles with greater Power to weight ratio. Innovations and process developments in materials and manufacturing processes are key to this light weighting transformation. Aluminium material has been widely used for these light weighting opportunities. However, aluminum joining techniques, characterized by their poor quality and consistency are limiting this transformation. This technical paper represents one of such case, where the part is made up of Aluminium through conventional casting route which has affected the laser weld quality due to poor casting soundness. This experiment explains in detail about the importance of Casting soundness for laser weld quality, weld penetration, strength etc., and the Product consistency.
Technical Paper

Headliner Composition Optimization without Compromising the Safety and Performance

2024-01-16
2024-26-0190
Reducing material wherever there is a possibility in automobile industry is inevitable for weight and cost saving. This paper explains about the possibilities of optimizing the material composition of automotive Headliners (also called as Roof liners) without affecting the performance and safety criteria. In this paper, we are targeting at optimizing the individual constituents of a composite Headliner. A conventional Headliner comprises of many sandwich layers of which PU foam shares the major percentage of the composition contributing to 80% of the Headliner thickness. In this paper, we are discussing about the optimization done in Headliner sandwich constituents without affecting the core performance parameters of headliner such as curtain airbag deployment, ergonomic regulations, drop test etc. By incorporating this change, without significant changes in other layers, overall weight reduction of ~24% and overall cost reduction of ~24% is achieved.
X