Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Improving the Clutch Design Robustness by Virtual Validation to Predict Clutch Energy Dissipation and Temperature in Clutch Housing

2021-09-22
2021-26-0329
During the vehicle launch (i.e. moving the vehicle from “0” speed), the clutch would be slowly engaged by the Driver or Transmission Control Unit (in Automatic Transmission/Automatic Manual Transmission vehicle) for smooth torque transfer between engine and transmission. The clutch is designed to transfer max engine torque with min heat generation. During the clutch engagement, the difference in flywheel and gearbox input shaft speed is called the clutch slipping phase which then leads to a huge amount of energy being dissipated in terms heat due to friction. As a result, clutch surface temperature increases consistently, when the surface temperature crosses the threshold limit, the clutch wears out quickly or burns spontaneously. Hence it is crucial to predict the energy dissipation and temperature variation in various components of clutch assembly through virtual simulation.
Technical Paper

Crevice Corrosion of Aluminium and It’s Prevention in Automobile Coolant Circuit

2017-01-10
2017-26-0170
This paper deals with the study of the phenomenon of crevice corrosion of aluminium by using an example of a corrosion failure of a joint in the automobile coolant circuit. A number of joint failures were studied to understand the corrosion pattern and for various metallurgical aspects like chemistry, hardness and microstructure. The corrosion products were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). This analysis indicated that the corrosion products mostly contained Aluminium Oxides with other contaminants like chlorides. The studies revealed that the clamped joint of the aluminium part and rubber hose led to the formation of a crevice with the engine coolant acting as the corrosive medium. The corrosion behavior at the location was affected by environmental factors like temperature, pH and chloride contamination.
Technical Paper

Implementation of Lean Approaches in Proto Body Build to Improve Productivity and Flexibility

2017-07-10
2017-28-1965
Lean approaches are being implemented in various manufacturing facilities across the globe. The application of lean approaches are extended to Body proto build shop to maximize the efficiency of the shop with lesser floor space and optimized equipment. Weld fixture, Weld equipment and assembly tools are the major tools required essentially for proto BIW assembly. This paper explains how the Weld equipment planning was carried out with lean approaches and implemented effectively in proto body assembly shop. The implemented lean concepts are compared with Italy and Japanese proto body build makers to validate the frugal planning of the facility for the said intent. The implemented facility is capable of producing more than a model at a time. Weld parameter selection for weld gun, gun movement to the fixture with minimized change over time and movable weld gun gantry are the lean approaches implemented.
Technical Paper

Assessing the Effect of Torque Converter Losses on the NOx Emission and Engine Stability in TGDI AT Vehicle

2021-10-01
2021-28-0185
The emission norms around the world are continuously changing and getting stringent with every revision. India is on its way to make its emission norms at par with that prevailing in the developed nations. The cold-start condition is an important factor affecting vehicle emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles. In this paper, the effects of change in torque converter losses on emissions are experimentally investigated in a TGDI AT vehicle. The instant engagement of the torque converter puts a sudden load on the engine and thus affects its stability. Thus, to overcome the stability issue, Engine Torque has to be simultaneously increased for smooth engagement. As a result, the likelihood of the slightly leaner air-fuel mixture in the cylinder, which results in higher NOx formation, is much greater in an AT vehicle than that of a similar MT vehicle.
Technical Paper

A Parametric Approach of IP Duct Vane Articulation Study for Enhanced Cabin Cool Down Performance

2021-10-01
2021-28-0200
The cabin cool down performance is influenced by heat load, AC system components and Air handling components. The air handling components are AC duct, vane and vent. Design of AC duct vane plays a crucial role in the airflow directivity in cabin which enhances the cabin cool down performance. Simulations are carried out by rotating the vanes manually and requires post process for every iteration. It leads to more time consuming and more number of simulations to achieve the target value. Research articles focusing on automation and optimization of vane articulation studies are scanty. Thus, the objective of this work is to execute the vane articulation study with less manual intervention. A parametric approach is developed by integrating ANSA and ANSYS FLUENT tools. With Direct Fit Morphing and DoE study approach from ANSA delivers the surface mesh model for the different vane angle configurations.
Technical Paper

Reduction of Diesel Engine Combustion Noise through Various Injection Strategies

2019-01-09
2019-26-0211
The contribution of engine borne noise is the major source of vehicle noise in diesel powered vehicles. The engine noise can be minimized by modification of engine components design and also with different acoustic abatement techniques. The research activities were carried out on 4-cylinder CRDe engine for SUV application. All the emission and performance parameters along with combustion noise was captured continuously for all the part load points from 1000 RPM to 2750 RPM with respect to the different road conditions and driving cycle. This paper targets on reducing the combustion noise at the noise prone zones only on the basis of the injection strategies ensuring no ill effect on the emissions and fuel economy. The first step was the reduction of rail pressure which helped noise levels to be reduced by almost 6 dB at noise zones. Main injection timing retardation was tried at all possible zones which influenced in considerable noise reduction at various zones.
Technical Paper

Cost and Weight Efficient Differential Housing for Off-Road Vehicles

2016-02-01
2016-28-0133
Differential in Gear Box play vital role in Tractors for assisting it in turning and also to take straight path. Light weight machine always have advantage in terms of fuel economy and performance. Weight optimized rotating part have additional benefits of saving power loss, against stationary dead weight. Differential Housing is such a part, which rotates during the vehicle motion and torque transmission. [1] This paper describes a method by which weight of the Differential Housing is optimized. In this particular body of work, additional constraints of avoiding any change in existing cold forged parts like Bevel Gear & Pinion. This also have additional benefit of enhanced flow of Oil inside Differential Housing for better lubrication of Bevel Gears and Pinion. This resulted in weight saving of Differential Housing and finally fuel economy of Tractor.
Technical Paper

A New and Effective Approach for Knowledge Sharing among Indian Automotive Industry

2015-01-14
2015-26-0073
Access to Knowledge resources around the world demands special skills and calls for judicious investments. Networking is an effective tool and building networks through consortia approach is dire need of the hour. Although this approach has been used in academia, its application in industry, especially among corporate entities, is rare. This paper describes in brief an optimised way to access databases, subscriptions & memberships of different technical societies from global platforms for research & progress of Indian automotive industry. It is imperative for Indian automotive industry to enhance and strengthen its knowledge resource base, particularly in product development and manufacturing domains. This will enable the industry to achieve its mission -“AMP-2016” of becoming a hub for global auto industry. Instead of “compete and grow,” an approach of “collaborate and grow” is thought of.
Technical Paper

Emission and Noise Optimization of CRDe Engine with Pilot Injection Strategies

2019-10-11
2019-28-0019
The combustion strategies play a key role in emission improvisation and noise reduction on diesel engines equipped for higher emission norus. This paper clearly discussed on the selection of various operating points for optimization and employing of proper calibration strategies like pilot strategy, Main injection timing, EGR type and rail pressure variation for best emission and noise output. Various optimization techniques have been implemented in our study. Since the pilot injection quantity as well as timing are varied in our paper, careful matrix formulation is required to determine the best optimum point. Around 340 points were obtained on varying pilot quantity and pilot separation sweep chosen at single engine speed and load for both the pilots. Out of the above points, 5 sensitive points were selected ensuring the sensitivity of the emissions and noise.
Technical Paper

Digital Automotive AC Pulldown Prediction in a Real Driving Condition

2019-12-30
2019-01-5090
Automotive Original Equipment Manufacturers (OEMs) are always striving to deliver fast Air-Conditioning (AC) pulldown performance with consistent distribution of cabin temperature to meet customer expectations. The ultimate test is the OEM standard, called “AC Pull Down,” conducted at high ambient temperature and solar load conditions with a prescribed vehicle drive cycle. To determine whether the AC system in the vehicle has the capacity to cool the cabin, throughout the drive cycle test, cabin temperature measurements are evaluated against the vehicle target. If the measured cabin temperatures are equal or lower than the required temperatures, the AC system is deemed conventional for customer usage. In this paper, numerical predictions of the cabin temperatures to replicate the AC pulldown test are presented. The AC pulldown scenario is carried out in a digital Climatic Wind Tunnel simulation. The solution used in this study is based on a coupled approach.
Technical Paper

Innovative Setting Bracket Design to Improve the Tractor Fit and Finish between the Bonnet and Custer Panel (Scuttle)

2020-09-25
2020-28-0479
Innovative setting bracket design to improve the tractor Fit and Finish between the Bonnet and Custer panel (Scuttle) The paper presents an integrated approach for arriving a process to assemble scuttle regarding bonnet to achieve Gap and flushness aesthetic requirement. Variation is inevitable due to fitting of bonnet on Tractor front semi-chassis, scuttle fitting on tractor middle clutch housing and assembling many parts with different tolerances, hence the deviation (stack-up) obtained after their assembly varies from approximately -10.175 to 9.775 mm. This is quite large and gives a huge impact in aesthetic point of view. To overcome this issue, we introduced one Innovative intermediate bracket as the setting gauge which is assembled with reference to bonnet and scuttle is mounted on this setting bracket hence zero flushness and uniform achieved between bonnet and scuttle.
Technical Paper

Non-Invasive Real Time Error State Detection for Tractors Using Smart Phone Sensors & Machine Learning

2019-01-09
2019-26-0217
Condition Monitoring is the process of identifying any significant change in operating parameters of a machine, which can be indicative of a failure in future. This paper discuss a non-invasive condition monitoring methodology for sensing and investigating the problems which could be identified by noise and vibrations. This could be an easy solution for predicting failures in tractors which are operational in the field. An example of engine tappet is used to demonstrate the methodology. A disturbed setting causes a distinguishable noise, referred to as “tappet rattle”. Android smartphones (with inbuilt sensors - accelerometer, gyroscope and microphone) are used to record noise and vibration from tractors in good condition as well as in disturbed condition. Time series data analysis is done to extract relevant features and then Fourier Transform is applied to the signals for extracting frequency domain signatures.
Technical Paper

Prediction of Oil Flow inside Tractor Transmission for Splash Type Lubrication

2019-01-09
2019-26-0082
This study introduces a method to examine the flow path of the lubricant inside a transmission housing of a tractor. A typical gearbox has several loads bearing elements which are in relative sliding motion to each other which causes heat to be released. The major sources of friction as well as heat are the meshing teeth between gears (sun/planet, planet/ring & power/range drive gear), thrust washers, thrust bearings and needle roller bearings. The churning of oil performs the vital function of both lubricating these sliding interfaces and cooling these sources of heat, thereby preventing failure of the gearbox. In this paper, we have applied VOF multiphase flow model and sliding meshing to simulate the fluid flow during splashed lubrication within a mating gear box. Lubrication oil dynamics and oil surface interaction with the air is modeled using VOF multiphase approach.
Technical Paper

Importance of Metallurgical Properties to Prevent Shaft Failures in Off-road Vehicle Validation

2023-05-25
2023-28-1319
Globally, automotive sector is moving towards improving off-road performance, durability and safety. Need of off-road performance leads to unpredictable overload to powertrain system due to unpaved roads and abuse driving conditions. Generally, shafts and gears in the transmission system are designed to meet infinite life. But, under abuse condition, it undergo overloads in both torsional and bending modes and finally, weak part in the entire system tend to fail first. This paper represents the failure analysis of one such an incident happened in output shaft under abuse test condition. Failure mode was confirmed as torsional overload using Stereo microscope and SEM. Application stress and shear strength of the shaft was calculated and found overstressing was the cause of failure. To avoid recurrence of breakage, improvement options were identified and subjected to static torsional test to quantify the improvement level.
Technical Paper

Importance of Casting Soundness in Aluminium Parts for Laser Weld Quality

2024-01-16
2024-26-0191
Light weight and Robust manufacturing technologies are always needed for transformation drive in the Automotive industry for the next-generation vehicles with greater Power to weight ratio. Innovations and process developments in materials and manufacturing processes are key to this light weighting transformation. Aluminium material has been widely used for these light weighting opportunities. However, aluminum joining techniques, characterized by their poor quality and consistency are limiting this transformation. This technical paper represents one of such case, where the part is made up of Aluminium through conventional casting route which has affected the laser weld quality due to poor casting soundness. This experiment explains in detail about the importance of Casting soundness for laser weld quality, weld penetration, strength etc., and the Product consistency.
Technical Paper

Realistic Electric Motor Modelling for Electric Vehicle Performance Prediction

2021-09-22
2021-26-0152
Costlier engine exhaust gas treatment systems as a result of stringent emission norms and increasing awareness about industrial effects on climate have pushed the automotive industry around the globe to shift its focus from fossil fuel driven vehicles to electrically powered ones. While Battery Electric Vehicles (BEVs) have some problematic issues such as lower range, lesser energy density and higher cost owing to not fully mature battery technology, they do provide some benefits such as lower carbon footprint and simpler transmission systems. The torque and power characteristics vary greatly between IC engines and electric motors. The longitudinal dynamics of a vehicle depends greatly on the nature of its powertrain. As a result, new challenges have emerged for simulation engineers who were until very recently accustomed only to IC engine driven vehicles.
X