Refine Your Search

Topic

Search Results

Technical Paper

In-Cylinder Charge Motion Development for Gasoline Engine

2021-09-22
2021-26-0062
In the recent years world-wide automotive manufacturers are continuously working in the research of the suiTable technical solutions to meet upcoming stringent carbon dioxide (CO2) emission targets, defined by regulatory authorities across the world. Many technologies have been already developed, or are currently under study, to meet the legislated targets. To meet this objective, the generation of tumble at intake stroke and the conservation of turbulence intensity at the end of compression stroke inside the combustion chamber have a significant role in the contribution towards accelerating the burning rate, increasing the thermal efficiency and reducing the cyclic variability [1]. Tumble generation is mainly attained by intake port design, and conservation is achieved during the end of compression stroke 690 ~ 720 crank angles (CA) which is strictly affected by the piston bowl geometry and pentroof combustion chamber shape.
Technical Paper

Flexible Pedestrian Legform Impactor [FlexPLI] - Examination for Its Repeatability and Reproducibility

2021-09-22
2021-26-0011
Recently, the Flexible Pedestrian Legform Impactor (or Flex-PLI) - an advancement over the existing EEVC legform - was included in the Global Technical Regulation for Pedestrian Safety viz. GTR-9. The legform tool undergoes impact testing with vehicle at 40kmph in order to evaluate the frontal structure of vehicle for Pedestrian Safety. Being more biofidelic design over the old EEVC legform, Flex-PLI is more flexible and sensitive towards different vehicle designs, shapes and inner bumper structure. This flexibility and sensitiveness of its design also calls for examining the Manufactured FlexPLI for its efficacy under impact testing in terms of its Durability, Repeatability and Reproducibility. This study aims at validating the performance of the test device by building a platform for computing the variations in test results. In this study, three key aspects are identified to measure the performance of this device - Durability, Repeatability, and Reproducibility.
Technical Paper

Study of Vehicular CO2 Variations in MIDC

2021-09-22
2021-26-0196
With introduction of CAFÉ norms in India from Apr’17, the manufacturer of all M1 Category vehicles (not exceeding 3,500kg GVW) has to ascertain that they comply with Annual Corporate Average CO2 Target as defined in AIS-137 regulation which is becoming stricter in future. Hence CO2 emissions are becoming one of the major focus parameters during vehicle development. The assessment of CAFÉ compliance involves multiple steps. Firstly, test agency provides Type Approval and Conformity of Production emission test reports to the Designated Agency. Accordingly, every manufacturer submits Fuel consumption report/Passbook to the Designated Agency on annual basis. After verification of all data, the Designated Agency issues a status of compliance to the Manufacturer. Such detailed assessment protocol presents a huge challenge for any manufacturer in maintaining the consistency/accuracy of CO2 produced by manufactured vehicles within the Type Approved Limit.
Technical Paper

Application of Electromagnets in Windshield Wipers

2021-09-22
2021-26-0510
The most widely used type of windshield wiper system employs a coil spring for wiper arm pressure generation. This spring is fixed between the arm head (fixed part) and wiper arm (moving part) and the tension in the spring is responsible for pressure generation. The present arrangement although being unsophisticated design, has following drawbacks: Inability to change wiper arm pressure according to change in vehicle speed. Inability to provide constant arm pressure during the complete range of motion along varying curvature of windshield. Inability to reduce/remove the continuous pressure on wiper blade when vehicle is parked for long durations resulting in permanent deformation of wiper blade rubber. This paper describes how electromagnets can be used to overcome the above stated inherent limitations of the windshield wiper system. An electromagnet is a device which produces magnetic field on application of electric current.
Technical Paper

Coastdown Road Load Coefficients of Passenger Vehicles - Variation Analysis and its Correlation with Temperature

2021-09-22
2021-26-0487
Road Load parameters (rolling resistance and aerodynamic drag) of a vehicle have strong impact on overall Vehicle Emissions and Fuel Economy. The road load coefficients are simulated on chassis dynamometer to carryout emission and fuel economy measurement and are hence required to be found beforehand. A realistic measure of road load parameters can be obtained by conducting a coastdown test. Coastdown test results are hugely impacted by various environmental parameters like ambient temperature, atmospheric pressure, wind speed etc. Though performed in standard boundary conditions, results of multiple tests performed on a vehicle vary from one another due to variations in the mentioned environmental parameters over and above standard test to test variation. This paper aims at studying the variation in test results due to ambient temperature as one of the parameters responsible.
Technical Paper

Light Weight Tubular Suspension Frame Design for Light Commercial Vehicle

2021-09-22
2021-26-0398
Front suspension frame is an integral part of automobile chassis which acts as a major load carrying structural member and connects different suspension components with body. It provides the required stiffness for achieving desired vehicle dynamics performance. Acting as a major road load path from tire to body, it also acts as a mounting base for suspension arm, steering and compression rod. Considering the competitive market conditions, increased fuel efficiency demand along with enhanced structural durability, it is important to evaluate suspension frame for stiffness and durability using Computer Aided Engineering (CAE) methodology so as to reduce product development time and First Time Right cost effective design. In this paper focus is given on CAE methodology used to design a light weight tubular kind of suspension frame for light commercial vehicle with stiffness comparable to conventional sheet metal suspension frame and similar durability performance with reduced weight.
Technical Paper

Road-Lab-Math (RLM) Strategy for Improving Vehicle Development Efficiency

2021-09-22
2021-26-0193
In today’s Indian automotive industry, vehicles are becoming more complex and require more efforts to develop. Also, new and upcoming regulations demand more trials under varied driving conditions to ensuring robustness of emission control. Combined with expectations of customer to get new products more frequently, requires solutions and methods that can allow more trials with required accuracy to ensure compliance to stricter regulation and delivery a quality product. This translates into more trials in less time during the development life cycle. Recently, to overcome above challenge, there has been focus on simulating the vehicles trials in engine bench environment. ‘Road to Lab to Math’ (RLM) is a methodology to reduce the effort of On-road testing and replace it with laboratory testing and mathematical models. Also, on-road testing of prototype vehicles is expensive as it requires physical parts.
Technical Paper

Design of Roof Rack Rails with Cost and Weight Optimization

2017-03-28
2017-01-1308
The fuel efficiency of a vehicle depends on multiple factors such as engine efficiency, type of fuel, aerodynamic drag, and tire friction and vehicle weight. Analysis of weight and functionality was done, to develop a lightweight and low-cost Roof rack rail. The Roof rack rail is made up of a lightweight material with thin cross section and has the design that allows the fitment of luggage carrier or luggage rack on the car roof. In starting this paper describes the design and weight contribution by standard Roof rack rail and its related parts. Secondly, the selection of material within different proposed options studied and a comparison of manufacturing and design-related factors. Thirdly, it has a description of the design of Roof rack rail to accommodate the luggage carrier fitment on the car roof. Moreover, optimizations of Roof rack rail design by continuous change in position, shape, and parts used.
Technical Paper

Design of Front Structure of Vehicle for Pedestrian Headform Protection

2017-03-28
2017-01-1298
Vehicle Hood being the face of a passenger car poses the challenge to meet the regulatory and aesthetic requirements. Urge to make a saleable product makes aesthetics a primary condition. This eventually makes the role of structure optimization much more important. Pedestrian protection- a recent development in the Indian automotive industry, known for dynamics of cost competitive cars, has posed the challenge to make passenger cars meeting the regulation at minimal cost. The paper demonstrates structure optimization of hood and design of peripheral parts for meeting pedestrian protection performance keeping the focus on low cost of ownership. The paper discusses development of an in-house methodology for meeting Headform compliance of a flagship model of Maruti Suzuki India Ltd., providing detailed analysis of the procedure followed from introduction stage of regulatory requirement in the project to final validation of the engineering intent.
Technical Paper

Effect of Muffler Characteristics on Performance of a Naturally Aspirated SI Engine

2013-11-27
2013-01-2834
With steep increase in fuel prices, there is a strong need for development of better engines with improved performance and emissions. This needs a dedicated effort on engine hardware optimization for lower CO2 levels. Exhaust muffler design is trade-off between noise, backpressure and size/weight. With increase in exhaust muffler volume and simplification of structure there is a corresponding drop observed in exhaust pressures. Study of such a phenomenon would give an insight to benefits achieved based on changes in muffler volumes/structure. This in a way leads to engine improvement. In this paper it has been shown how exhaust muffler characteristics (size and internal construction) impacts engine performance.
Technical Paper

Mitigation of Abnormal Injector Ticking Noise by Optimization of Hydraulic Operational Modes of Fuel System

2022-10-05
2022-28-0096
With the advent of stricter regulation for tail pipe emission and urge to reduce the carbon foot prints, the engine hardware has undergone through evolutionary changes over the years i.e., boosting, low viscosity engine oil, high pressure fuel injection, cooled EGR, friction reduction, downsizing etc. These technological changes have led to the challenge of increase in radiated noise level from the engine (source) due to increased number of auxiliary drives on engine i.e., Turbo charger, HP fuel pump along with faster combustion & harsher operating conditions. The fuel system is one such system which has become most intricate with operating pressure going above 2000bar in the fuel rail and capability of up to 10 fuel injection per combustion. These changes in hardware could result in abnormal noise generation during specific operating conditions which may result in customer annoyance inside vehicle cabin.
Technical Paper

Study of Electronic Thermostat on Performance & Fuel Economy of Naturally Aspirated Gasoline Engine

2022-10-05
2022-28-0018
In view of global concern for greenhouse gas emissions, need for greener and efficient Engines is increasing. Hence is it imperative that Internal Combustion Engines are improved in terms of efficiency to reduce Greenhouse gas emissions and meet CAFE targets. The cooling system of an ICE plays a major role in a vehicle performance. In this system, the radiator, thermostat, and cooling fan are the main components. Conventional cooling system uses Wax-type thermostat which is activated at specified coolant temperature and maintain same coolant temperature in fully warmed up condition at all engine operating points. Operative temperature selection in Wax-type is trade-off between engine friction & thermal efficiency at lower loads & knocking at higher loads. An electronic thermostat is a good alternative to maintain optimum temperature as per operating point requirement since optimum temperature at different operating points can be different.
Technical Paper

Design Methodology to Restrict Catalyst Theft in the Market Vehicles

2022-10-05
2022-28-0019
Automobile Catalyst are used to convert Harmful gases emitted by vehicle (CO, HC, and NOx) to less Harmful gas (CO2, H2O and N2), Catalyst Loading comprises of Platinum, Palladium and Rhodium (Rare earth metals) metal powders combined in slurry and wash-coated onto a ceramic brick. Ever since the introduction of BS6 Emissions norm (stricter emission regulation), Catalyst loading content has increased in all vehicles. The Price of these rare earth metal are increasing day by day. Typically, a BS6 regulation catalyst contains a few grams of loading content. In some vehicles there are more than one catalyst (due to regulation requirement) and in some cases catalysts are also located in the underbody, in such cases, Number and location of catalyst makes the vehicle an easy target for thieves. Recently local police authorities around the country have captured many catalysts theft gangs.
Technical Paper

Assessment of CNG & CBG Composition Variation on CO2 Emissions, Engine Performance and Durability for a Small Size PFI Engine

2022-10-05
2022-28-0020
Considering the stricter regulation norms to be imposed by the policymakers to reduce carbon footprint and to meet the goals of Paris Agreement, Automotive industry is now focusing on relatively cleaner fuels such as Compressed Natural-Gas (CNG), Compressed Biogas (CBG) etc. alternative to conventional fuels i.e., petrol and diesel. As emissions from conventional fuels are one of the biggest contributors to climate change and are the primal cause of global warming, the world needs to limit their usage and to explore the possibilities of renewable fuels with less carbon emission keeping carbon neutrality vision in mind. In current scenario, gaseous fuel composition varies from region to region, and it impacts CO2 emission, engine performance parameters etc.
Technical Paper

Design Optimization of Hood System for Pedestrian Headform Protection

2016-02-01
2016-28-0250
Hood is the closure provided in the frontal portion of the vehicle for covering the engine room. Any component disposed in the frontal portion of the vehicle becomes important because of aesthetic as well as regulatory requirements. Introduction of new regulations like pedestrian protection brings new challenges for the original equipment manufacturers and the governing authorities. Introduction of Pedestrian Protection regulation, a recent development in the automotive industry, has thrown several questions in front of original equipment manufacturers. This work explains the procedure to address such question and the learning associated with it.
Technical Paper

An Experimental Study of Mechanism of Body Panel Vibration in Booming Noise Reduction of Passenger Vehicles

2016-02-01
2016-28-0198
In a typical passenger vehicle, there can be different types of noises generated which are broadly categorized as Interior Noise and Exterior Noise. The interior noise sources can be further classified into noises which can be Structure Borne or Air Borne. One of the major sources of both structure borne and airborne noise generation is the powertrain of the vehicle. The structure-borne noise and vibrations generated from the powertrain is usually transferred to the vehicle body through its attachment points to the body and the powertrain driveline. These induced body vibrations can sometimes cause the acoustic cavity of the passenger cabin to go into resonance which results in an annoying and disturbing noise for the passengers, called Booming Noise. Very often, one or more than one vehicle body panels show a dominant contribution in inducing this acoustic cavity resonance.
Technical Paper

Investigation of Relation between Sub System Level (Quasi-Static) Side Door Intrusion to Side Collision Test

2015-01-14
2015-26-0171
With the change in the perspective of the Customers towards safer vehicles, most of the Vehicle manufacturers in India are making their vehicles Crash compliant. According to the accidental data collection, Side crashes are second leading cause of death after Frontal crash. Currently sub system level tests are done for evaluating the side impact safety performance of the vehicle. One of such sub system level test is Quasi-static side door intrusion Test. The primary purpose of this testing is to measure the Force-deflection characteristics by intrusion of the impactor into the vehicle. These characteristics are controlled by various door components like door beam, latch & striker, hinge etc. This article studies the relation between Side door intrusion and Side collision, effect of above mentioned components on this relation. A theoretical study is done to study this relationship and it is substantiated with experimental data.
Technical Paper

Methodology to Measure BIW Torsional Stiffness and Study to Identify and Optimize Critical Panels

2015-01-14
2015-26-0224
BIW (Body-in White) is a type of vehicle structure formed by spot welding of different sheet metal components. The BIW structure should be designed to support the maximum load potential under various performance conditions. Thus the structure should have good strength as well as stiffness. Torsion Stiffness of BIW is the amount of torque required to cause a unit degree of twist. It is often considered as a benchmark of its structural competence due to its effect on various parameters like ride, handling, lateral load distribution and NVH performance of vehicle. The paper aims to design and develop a test methodology and test fixtures for measuring the BIW torsion stiffness with repeatability of test results and also have an (R2>0.99) for the measured values in the test.
Technical Paper

Interior Noise Reduction in a Passenger Vehicle through Mode Modulation of Backdoor

2016-02-01
2016-28-0058
Inside cabin of a passenger car, low frequency booming noise still presents a major hurdle for NVH engineers to fine tune a vehicle. Low frequency booming noise is presently taken care with addition of mass damper and large reinforcements. These conventional countermeasures add weight to the vehicle as well as increase the overall production cost. The study presented in this paper proposes a countermeasure model that not only reduces the booming noise but also avoids any weight and cost addition. It has been focused for low frequency booming noise around 30 ∼ 40 Hz. Within the range mentioned, one of the major reasons for booming noise in hatchback models is the bending resonance of backdoor. By modifying the mode of the backdoor in such a manner that it cancels the effect of bending on the vehicle acoustic cavity, improvement can be achieved in terms of sound pressure level at the driver’s right ear location (DREL).
Technical Paper

Experimental Study to Analyze Various Parameters Improving the Cabin Air Quality

2022-11-09
2022-28-0456
Cabin Air quality is the measure of quality of air within the vehicle. Cabin air quality is not just important for comfort but for safety as well [1]. For decades, scientists have studied the air quality outside of automobiles. The in-cabin microenvironment has become a significant source of exposure to numerous air pollutants, such as particulate matter (PM), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), carbon monoxide, and nitrogen oxides, etc. [4]. There are various physical parameters such as filters, cabin temperature, air exchange rate, A/C ON or OFF condition and direction of flow of air inside the vehicle cabin, which can affect the cabin air quality and purification time. The air exchange and its rate being of highest importance [2]. The paper consists of various experimental results to check the effect of these parameters in improving the cabin air quality.
X