Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

CoQ Tradeoffs in Manufacturing Process Improvement and Inspection Strategy Selection: A Case Study of Welded Automotive Assemblies

2012-04-16
2012-01-0514
In today's highly competitive automotive markets manufacturers must provide high quality products to survive. Manufacturers can achieve higher levels of quality by changing or improving their manufacturing process and/or by product inspection where many strategies with different cost implications are often available. Cost of Quality (CoQ) reconciles the competing objectives of quality maximization and cost minimization and serves as a useful framework for comparing available manufacturing process and inspection alternatives. In this paper, an analytic CoQ framework is discussed and some key findings are demonstrated using a set of basic inspection strategy scenarios. A case of a welded automotive assembly is chosen to explore the CoQ tradeoffs in inspection strategy selection and the value of welding process improvement. In the assembly process, many individual components are welded in series and each weld is inspected for quality.
Journal Article

Sensitivity Analysis of Ash Packing and Distribution in Diesel Particulate Filters to Transient Changes in Exhaust Conditions

2012-04-16
2012-01-1093
Current CJ-4 lubricant specifications place chemical limits on diesel engine oil formulations to minimize the accumulation of lubricant-derived ash in diesel particulate filters (DPF). While lubricant additive chemistry plays a strong role in determining the amount and type of ash accumulated in the DPF, a number of additional factors play important roles as well. Relative to soot particles, whose residence time in the DPF is short-lived, ash particles remain in the filter for a significant fraction of the filter's useful life. While it is well-known that the properties (packing density, porosity, permeability) of soot deposits are primarily controlled by the local exhaust conditions at the time of particle deposition in the DPF, the cumulative operating history of the filter plays a much stronger role in controlling the properties and distribution of the accumulated ash.
Technical Paper

The Mars Gravity Biosatellite: Thermal Design Strategies for a Rotating Partial Gravity Spacecraft

2007-07-09
2007-01-3078
A rotating spacecraft which encloses an atmospheric pressure vessel poses unique challenges for thermal control. In any given location, the artificial gravity vector is directed from the center to the periphery of the vehicle. Its local magnitude is determined by the mathematics of centripetal acceleration and is directly proportional to the radius at which the measurement is taken. Accordingly, we have a system with cylindrical symmetry, featuring microgravity at its core and increasingly strong gravity toward the periphery. The tendency for heat to move by convection toward the center of the craft is one consequence which must be addressed. In addition, fluid flow and thermal transfer is markedly different in this unique environment. Our strategy for thermal control represents a novel approach to address these constraints. We present data to theoretically and experimentally justify design decisions behind the Mars Gravity Biosatellite's proposed payload thermal control subassembly.
Technical Paper

Modeling Costs and Fuel Economy Benefits of Lightweighting Vehicle Closure Panels

2008-04-14
2008-01-0370
This paper illustrates a methodology in which complete material-manufacturing process cases for closure panels, reinforcements, and assembly are modeled and compared in order to identify the preferred option for a lightweight closure design. First, process-based cost models are used to predict the cost of lightweighting the closure set of a sample midsized sports utility vehicle (SUV) via material and process substitution. Weight savings are then analyzed using a powertrain simulation to understand the impact of lightweighting on fuel economy. The results are evaluated in the context of production volume and total mass change.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

An Experimental Study of Piston Skirt Roughness and Profiles on Piston Friction Using the Floating Liner Engine

2016-04-05
2016-01-1043
The piston skirt is an important contributor of friction in the piston assembly. This paper discusses friction contributions from various aspects of the piston skirt. A brief study of piston skirt patterns is presented, with little gains being made by patterning the piston skirt coating. Next the roughness of the piston skirt coating is analyzed, and results show that reducing piston skirt roughness can have positive effects on friction reduction. Finally, an introductory study into the profile of the piston skirt is presented, with the outcome being that friction reduction is possible by optimizing the skirt profile.
Technical Paper

Durable Coating Technology for Lunar Dust Protection and Mitigation

2006-07-17
2006-01-2205
Special coatings are being developed and tested to contend with the effects of dust on the lunar surface. These coatings will have wide applicability ranging from prevention of dust buildup on solar arrays and radiator surfaces to protection of EVA space suit fabrics and visors. They will be required to be durable and functional based on application. We have started preparing abrasion-resistant transparent conductive coatings ∼40 nm thick were formed by co-deposition of titanium dioxide (TiO2) and titanium (Ti) on room-temperature glass and polycarbonate substrates using two RF magnetron sputtering sources. By adjusting Ti content, we obtained sheet resistivities in the range 104-1010 ohms/square. We have also started conducting a series of environmental tests that simulate the exposure of coated samples to dust under relevant conditions, beginning with abrasion tests using regolith simulant materials.
Technical Paper

Economic and Environmental Tradeoffs in New Automotive Painting Technologies

1998-02-23
981164
Painting is the most expensive unit operation in automobile manufacturing and the source of over 90 percent of the air, water and solid waste emissions at the assembly plant. While innovative paint technologies such as waterborne or powder paints can potentially improve plant environmental performance, implementing these technologies often requires major capital investment. A process-based technical cost model was developed for examining the environmental and economic implications of automotive painting at the unit operation level. The tradeoffs between potential environmental benefits and their relative costs are evaluated for current and new technologies.
Technical Paper

Flame Shape Determination Using an Optical-Fiber Spark Plug and a Head-Gasket Ionization Probe

1994-10-01
941987
A method for determining the flame contour based on the flame arrival time at the fiber optic (FO) spark plug and at the head gasket ionization probe (IP) locations has been developed. The experimental data were generated in a single-cylinder Ricardo Hydra spark-ignition engine. The head gasket IP, constructed from a double-sided copper-clad circuit board, detects the flame arrival time at eight equally spaced locations at the top of the cylinder liner. Three other IP's were also installed in the cylinder head to provide additional intermediate data on flame location and arrival time. The FO spark plug consists of a standard spark plug with eight symmetrically spaced optical fibers located in the ground casing of the plug. The cylinder pressure was recorded simultaneously with the eleven IP signals and the eight optical signals using a high-speed PC-based data acquisition system.
Technical Paper

Effect of Engine Operating Parameters on Hydrocarbon Oxidation in the Exhaust Port and Runner of a Spark-Ignited Engine

1995-02-01
950159
The effect of engine operating parameters (speed, spark timing, and fuel-air equivalence ratio [Φ]) on hydrocarbon (HC) oxidation within the cylinder and exhaust system is examined using propane or isooctane fuel. Quench gas (CO2) is introduced at two locations in the exhaust system (exhaust valve or port exit) to stop the oxidation process. Increasing the speed from 1500 to 2500 RPM at MBT spark timing decreases the total, cylinder-exit HC emissions by ∼50% while oxidation in the exhaust system remains at 40% for both fuels. For propane fuel at 1500 rpm, increasing Φ from 0.9 (fuel lean) to 1.1 (fuel rich) reduces oxidation in the exhaust system from 42% to 26%; at 2500 RPM, exhaust system oxidation decreases from 40% to approximately 0% for Φ = 0.9 and 1.1, respectively. Retarded spark increases oxidation in the cylinder and exhaust system for both fuels. Decreases in total HC emissions are accompanied by increased olefinic content and atmospheric reactivity.
Technical Paper

Modeling of Engine-Out Hydrocarbon Emissions for Prototype Production Engines

1995-02-01
950984
A model has been developed which predicts engine-out hydrocarbon (HC) emissions for spark-ignition engines. The model consists of a set of scaling laws that describe the individual processes that contribute to HC emissions. The model inputs are the critical engine design and operating variables. This set of individual process scaling relations was then calibrated using production spark-ignition engine data at a fixed light-load operating point. The data base consisted of engine-out HC emissions from two-valve and four-valve engine designs with variations in spark timing, valve timing, coolant temperature, crevice volume, and EGR, for five different engines. The model was calibrated separately for the three different engines to accommodate differences in engine design details and to determine the relative magnitudes of each of the major sources. A good fit to this database was obtained.
Technical Paper

3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston

1996-05-01
961195
A Lagrangian random vortex-boundary element method has been developed for the simulation of unsteady incompressible flow inside three-dimensional domains with time-dependent boundaries, similar to IC engines. The solution method is entirely grid-free in the fluid domain and eliminates the difficult task of volumetric meshing of the complex engine geometry. Furthermore, due to the Lagrangian evaluation of the convective processes, numerical viscosity is virtually removed; thus permitting the direct simulation of flow at high Reynolds numbers. In this paper, a brief description of the numerical methodology is given, followed by an example of induction flow in an off-centered port-cylinder assembly with a harmonically driven piston and a valve seat situated directly below the port. The predicted flow is shown to resemble the flow visualization results of a laboratory experiment, despite the crude approximation used to represent the geometry.
Technical Paper

The Theory of Cost Risk in Design

1999-03-01
1999-01-0495
In a recent paper (Hoult & Meador, [1]) a novel method of estimating the costs of parts, and assemblies of parts, was presented. This paper proposed that the metric for increments of cost was the function log (dimension/tolerance). Although such log functions have a history,given in [1], starting with Boltzman and Shannon, it is curious that it arises in cost models. In particular, the thermodynamic basis of information theory, given by Shannon [2], seems quite implausible in the present context. In [1], we called the cost theory “Complexity Theory”, mainly to distinguish it from information theory. A major purpose of the present paper is to present a rigorous argument of how the log function arises in the present context. It happens that the agrument hinges on two key issues: properties of the machine making or assembling the part, and a certain limit process. Neither involves thermodynamic reasoning.
Technical Paper

Developing Design Guidelines for an SCR Assembly Equipped for RF Sensing of NH3 Loading

2018-04-03
2018-01-1266
The Cu-zeolite (CuZ) SCR catalyst enables higher NOx conversion efficiency in part because it can store a significant amount of NH3. “NH3 storage control”, where diesel exhaust fluid (DEF) is dosed in accord with a target NH3 loading, is widely used with CuZ catalysts to achieve very high efficiency. The NH3 loading actually achieved on the catalyst is currently estimated through a stoichiometric calculation. With future high-capacity CuZ catalyst designs, it is likely that the accuracy of this NH3 loading estimate will become limiting for NOx conversion efficiency. Therefore, a direct measurement of NH3 loading is needed; RF sensing enables this. Relative to RF sensing of soot in a DPF (which is in commercial production), RF sensing of NH3 adsorbed on CuZ is more challenging. Therefore, more attention must be paid to the “microwave resonance cavity” created within the SCR assembly. The objective of this study was to develop design guidelines to enable and enhance RF sensing.
X