Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Mathematical Analysis of Clutch Thermal Energy during Automatic Shifting Coupled with Input Torque Truncation

2020-04-14
2020-01-0967
A step-ratio automatic transmission alters torque paths for gearshifting through engagement and disengagement of clutches. It enables torque sources to run efficiently while meeting driver demand. Yet, clutch thermal energy during gearshifting is one of the contributors to the overall fuel loss. In order to optimize drivetrain control strategy, including the frequency of shifts, it is important to understand the cost of shift itself. In a power-on upshift, clutch thermal energy is primarily dissipated during inertia phase. The interaction between multiple clutches, coupled with input torque truncation, makes the decomposition of overall energy loss less obvious. This paper systematically presents the mathematical analysis of clutch thermal energy during the inertia phase of a typical single-transition gearshift. In practice, a quicker shift is generally favored, partly because the amount of energy loss is considered smaller.
Technical Paper

Multi-objective Parameter Optimization of Automatic Transmission Shift Control Profiles

2018-04-03
2018-01-1164
This paper proposes a method for multi-objective parameter optimization of piecewise linear time profiles for control of Automatic Transmission (AT) shifts and presents results obtained on an example of a powertrain with a 10-speed automatic transmission. The paper first outlines the powertrain dynamics model. Then, the AT control trajectory optimization approach is outlined and employed with the aim of getting insights into the optimal shift control profiles and related performance. The parameter optimization problem is to find parameters of piecewise linear shift control profiles, which provide a trade-off between the shift comfort and performance. The optimization problem is solved by using the multi-objective genetic algorithm MOGA-II incorporated within modeFRONTIER environment.
X