Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Multi-Component Quantitative PLIF: Robust Engineering Measurements of Cyclic Variation in a Firing Spray-Guided Gasoline Direct Injection Engine

2008-04-14
2008-01-1073
Planar Laser-Induced Fluorescence has been widely accepted and applied to measurements of fuel concentration distributions in IC engines. The need for such measurements has increased with the introduction of Direct Injection (DI) gasoline engines, where it is critical to understand the influence of mixture inhomogeneity on ignition and subsequent combustion, and in particular the implications for cyclic variability. The apparent simplicity of PLIF has led to misunderstanding of the technique when applied to quantitative measurements of fuel distributions. This paper presents a series of engineering methods for optimizing, calibrating and referencing, which together demonstrate a quantitative measure of fuel concentration with an absolute accuracy of 10%. PLIF is widely used with single component fuels as carriers for the fluorescent tracers.
Technical Paper

Finite Element Analysis of Eroding Type Surface Thermocouple with Application to Engine Heat Flux Measurement

2006-04-03
2006-01-1045
A two-dimensional finite element model has been used to analyze the unsteady heat conduction behavior of an eroding type of surface thermocouple. The impulse response of the thermocouple was analyzed by using both a one-dimensional solution and a two-dimensional model. The experimental impulse response of the thermocouple was investigated by a laser impulse excitation experiment to validate the modeling results. The modeling results showed that there was a significant difference between the two-dimensional modeling and the one-dimensional analytical solution, especially before 1 ms. The two-dimensional modeling result is closer to the laser impulse experiment result, which implies the existence of a multi-dimensional effect on the transient heat conduction within the eroding thermocouple.
Technical Paper

In-Cylinder Temperature Estimation from an Optical Spray-Guided DISI Engine with Color-Ratio Pyrometry (CRP)

2006-04-03
2006-01-1198
Color-ratio pyrometry (CRP) is a technique for estimating the temperature and loading of soot, based on its thermal emission spectrum. This technique is contrasted with conventional two-color pyrometry which requires absolute measurements of the radiation intensity, either at two specific wavelengths or ranges of wavelengths. CRP uses two ratios, obtained by measuring the radiation intensity for three wavelengths or wavelength bands. CRP has been implemented here by using a digital CCD camera, and full details of the calibration are reported. Because of uncertainties in the emissivity of reference sources (such as tungsten ribbon lamps, in which the emissivity depends on temperature and wavelength), then a spectroscopic calibration of the CCD camera has been used. Use of a CCD camera is not straightforward because of internal digital signal processing (DSP), so full details are given of the calibration and technique implementation.
X