Refine Your Search

Topic

Author

Search Results

Journal Article

Study of On-Board Ammonia (NH3) Generation for SCR Operation

2010-04-12
2010-01-1071
Mechanisms of NH₃ generation using LNT-like catalysts have been studied in a bench reactor over a wide range of temperatures, flow rates, reformer catalyst types and synthetic exhaust-gas compositions. The experiments showed that the on board production of sufficient quantities of ammonia on board for SCR operation appeared feasible, and the results identified the range of conditions for the efficient generation of ammonia. In addition, the effects of reformer catalysts using the water-gas-shift reaction as an in-situ source of the required hydrogen for the reactions are also illustrated. Computations of the NH₃ and NOx kinetics have also been carried out and are presented. Design and impregnation of the SCR catalyst in proximity to the ammonia source is the next logical step. A heated synthetic-exhaust gas flow bench was used for the experiments under carefully controlled simulated exhaust compositions.
Journal Article

CoQ Tradeoffs in Manufacturing Process Improvement and Inspection Strategy Selection: A Case Study of Welded Automotive Assemblies

2012-04-16
2012-01-0514
In today's highly competitive automotive markets manufacturers must provide high quality products to survive. Manufacturers can achieve higher levels of quality by changing or improving their manufacturing process and/or by product inspection where many strategies with different cost implications are often available. Cost of Quality (CoQ) reconciles the competing objectives of quality maximization and cost minimization and serves as a useful framework for comparing available manufacturing process and inspection alternatives. In this paper, an analytic CoQ framework is discussed and some key findings are demonstrated using a set of basic inspection strategy scenarios. A case of a welded automotive assembly is chosen to explore the CoQ tradeoffs in inspection strategy selection and the value of welding process improvement. In the assembly process, many individual components are welded in series and each weld is inspected for quality.
Journal Article

NOx Reduction Using a Dual-Stage Catalyst System with Intercooling in Vehicle Gasoline Engines under Real Driving Conditions

2018-04-03
2018-01-0335
Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is used in diesel-fueled mobile applications where urea is an added reducing agent. We show that the Ultera® dual-stage catalyst, with intercooling aftertreatment system, intrinsically performs the function of the SCR method in nominally stoichiometric gasoline vehicle engines without the need for an added reductant. We present that NOx is reduced during the low-temperature operation of the dual-stage system, benefiting from the typically periodic transient operation (acceleration and decelerations) with the associated swing in the air/fuel ratio (AFR) inherent in mobile applications, as commonly expected and observed in real driving. The primary objective of the dual-stage aftertreatment system is to remove non-methane organic gases (NMOG) and carbon monoxide (CO) slip from the vehicle’s three-way catalyst (TWC) by oxidizing these constituents in the second stage catalyst.
Technical Paper

The Effects of Sulfated Ash, Phosphorus and Sulfur on Diesel Aftertreatment Systems - A Review

2007-07-23
2007-01-1922
This paper reviews the relevant literature on the effects of sulfated ash, phosphorus, and sulfur on DPF, LNT, and SCR catalysts. Exhaust backpressure increase due to DPF ash accumulation, as well as the rate at which ash is consumed from the sump, were the most studied lubricant-derived DPF effects. Based on several studies, a doubling of backpressure can be estimated to occur within 270,000 to 490,000 km when using a 1.0% sulfated ash oil. Postmortem DPF analysis and exhaust gas measurements revealed that approximately 35% to 65% less ash was lost from the sump than was expected based on bulk oil consumption estimates. Despite significant effects from lubricant sulfur and phosphorus, loss of LNT NOX reduction efficiency is dominated by fuel sulfur effects. Phosphorus has been determined to have a mild poisoning effect on SCR catalysts. The extent of the effect that lubricant phosphorus and sulfur have on DOCs remains unclear, however, it appears to be minor.
Technical Paper

Development of a Computational Method of Low Cycle Fatigue Prediction for Multi-Layer Surfaces under Rolling/Sliding Contact Conditions

2007-04-16
2007-01-0388
The application of tribologically enhanced coatings to automotive components is increasingly common. This paper highlights the development of a computational method used to simulate multi-layer coatings subjected to repeated mixed rolling / sliding contact. Through simulation with ABAQUS and the application of a specially written external subroutine, the simulation method monitors the stress and strain states during the simulation against a number of criteria used to locate the point of material failure. The results from a number of rolling contact with coated samples are used to verify and refine the user subroutine with the aim to developing an accurate RCF prediction method.
Technical Paper

Engine Wear Modeling with Sensitivity to Lubricant Chemistry: A Theoretical Framework

2007-04-16
2007-01-1566
The life of an automotive engine is often limited by the ability of its components to resist wear. Zinc dialkyldithiophosphate (ZDDP) is an engine oil additive that reduces wear in an engine by forming solid antiwear films at points of moving contact. The effects of this additive are fairly well understood, but there is little theory behind the kinetics of antiwear film formation and removal. This lack of dynamic modeling makes it difficult to predict the effects of wear at the design stage for an engine component or a lubricant formulation. The purpose of this discussion is to develop a framework for modeling the formation and evolution of ZDDP antiwear films based on the relevant chemical pathways and physical mechanisms at work.
Technical Paper

Modeling Costs and Fuel Economy Benefits of Lightweighting Vehicle Closure Panels

2008-04-14
2008-01-0370
This paper illustrates a methodology in which complete material-manufacturing process cases for closure panels, reinforcements, and assembly are modeled and compared in order to identify the preferred option for a lightweight closure design. First, process-based cost models are used to predict the cost of lightweighting the closure set of a sample midsized sports utility vehicle (SUV) via material and process substitution. Weight savings are then analyzed using a powertrain simulation to understand the impact of lightweighting on fuel economy. The results are evaluated in the context of production volume and total mass change.
Technical Paper

Crash Safety of Lithium-Ion Batteries Towards Development of a Computational Model

2010-04-12
2010-01-1078
Battery packs for Hybrids, Plug-in Hybrids, and Electric Vehicles are assembled from a system of modules (sheets) with a tight sheet metal casing around them. Each module consists of an array of individual cells which vary in the composition of electrodes and separator from one manufacturer to another. In this paper a general procedure is outlined on the development of a constitutive and computational model of a cylindrical cell. Particular emphasis is placed on correct prediction of initiation and propagation of a tearing fracture of the steel can. The computational model correctly predicts rupture of the steel can which could release aggressive chemicals, fumes, or spread the ignited fire to the neighboring cells. The initiation site of skin fracture depends on many factors such as the ductility of the casing material, constitutive behavior of the system of electrodes, and type of loading.
Technical Paper

Inverse Method for Measuring Weld Temperatures during Resistance Spot Welding

2001-03-05
2001-01-0437
A new monitoring system predicts the progression of welding temperature fields during resistance spot welding. The system captures welding voltages and currents to predict contact diameters and simulate temperature fields. The system accurately predicts fusion lines and heat-affected zones. Accuracy holds even for electrode tips used for a few thousand welds of zinc coated steels.
Technical Paper

The Surface Analysis of Powder Metallurgy (P/M) Components Machined by Diamond-Like Carbon (DLC) Coating Cutting Tools

2003-03-03
2003-01-0452
The surface analysis is one of the most important factors of the metal machining process due to the tolerance and geometry requirements. The characteristic of powder metallurgy (P/M) surface geometry is the main issue here, because the porous structure affects the surface quality. A discontinuous cutting path and some vibration occur when cutting tool passes from the edge of one pore to that of another. The amorphous material such as Diamond-like carbon (DLC) coating has been applied on the cutting inserts to improve the machinability. This paper will evaluate the surface finish of the P/M components by employing a DLC cutting insert. Due to the specific physical properties of DLC coating, it is important to understand the effects of DLC coated insert on the surface roughness at different cutting speeds and feedrates. This work investigates the factors of friction between the cutting tools, workpiece and observes how the coating material affects the finish surface.
Technical Paper

An Experimental Study of Piston Skirt Roughness and Profiles on Piston Friction Using the Floating Liner Engine

2016-04-05
2016-01-1043
The piston skirt is an important contributor of friction in the piston assembly. This paper discusses friction contributions from various aspects of the piston skirt. A brief study of piston skirt patterns is presented, with little gains being made by patterning the piston skirt coating. Next the roughness of the piston skirt coating is analyzed, and results show that reducing piston skirt roughness can have positive effects on friction reduction. Finally, an introductory study into the profile of the piston skirt is presented, with the outcome being that friction reduction is possible by optimizing the skirt profile.
Technical Paper

Lab Study of Urea Deposit Formation and Chemical Transformation Process of Diesel Aftertreatment System

2017-03-28
2017-01-0915
Diesel exhaust fluid, DEF, (32.5 wt.% urea aqueous solution) is widely used as the NH3 source for selective catalytic reduction (SCR) of NOx in diesel aftertreatment systems. The transformation of sprayed liquid phase DEF droplets to gas phase NH3 is a complex physical and chemical process. Briefly, it experiences water vaporization, urea thermolysis/decomposition and hydrolysis. Depending on the DEF doser, decomposition reaction tube (DRT) design and operating conditions, incomplete decomposition of injected urea could lead to solid urea deposit formation in the diesel aftertreatment system. The formed deposits could lead to engine back pressure increase and DeNOx performance deterioration etc. The formed urea deposits could be further transformed to chemically more stable substances upon exposure to hot exhaust gas, therefore it is critical to understand this transformation process.
Technical Paper

Durable Coating Technology for Lunar Dust Protection and Mitigation

2006-07-17
2006-01-2205
Special coatings are being developed and tested to contend with the effects of dust on the lunar surface. These coatings will have wide applicability ranging from prevention of dust buildup on solar arrays and radiator surfaces to protection of EVA space suit fabrics and visors. They will be required to be durable and functional based on application. We have started preparing abrasion-resistant transparent conductive coatings ∼40 nm thick were formed by co-deposition of titanium dioxide (TiO2) and titanium (Ti) on room-temperature glass and polycarbonate substrates using two RF magnetron sputtering sources. By adjusting Ti content, we obtained sheet resistivities in the range 104-1010 ohms/square. We have also started conducting a series of environmental tests that simulate the exposure of coated samples to dust under relevant conditions, beginning with abrasion tests using regolith simulant materials.
Technical Paper

Effect of Composition, Particle Size, and Heat Treatment on the Mechanical Properties of Al-4.5 wt.% Cu Based Alumina Particulate Reinforced Composites

1998-02-23
980700
The quest for higher efficiency and performance of automotive vehicles requires application of materials with high strength, stiffness and lower weight in their construction. Particulate-reinforced aluminum-matrix composites are cost-competitive materials, which can meet these requirements. MMCC, Inc. has been optimizing particulate-reinforced alloy systems and developing the Advanced Pressure Infiltration Casting (APIC™) process for the manufacture of components from these materials. This paper discusses the results of a recent study in which composites reinforced with 55 vol.% alumina were cast using two sizes of alumina particulate and eight different matrix alloys based on Al-4.5 wt.% Cu with varying amounts of silicon and magnesium. Optimum heat treatments for each alloy were determined utilizing microhardness studies. The tensile strength and fracture toughness were evaluated as a function of alloy chemistry, particulate size, and heat treatment.
Technical Paper

Economic and Environmental Tradeoffs in New Automotive Painting Technologies

1998-02-23
981164
Painting is the most expensive unit operation in automobile manufacturing and the source of over 90 percent of the air, water and solid waste emissions at the assembly plant. While innovative paint technologies such as waterborne or powder paints can potentially improve plant environmental performance, implementing these technologies often requires major capital investment. A process-based technical cost model was developed for examining the environmental and economic implications of automotive painting at the unit operation level. The tradeoffs between potential environmental benefits and their relative costs are evaluated for current and new technologies.
Technical Paper

A CAD-Driven Flexible Forming System for Three-Dimensional Sheet Metal Parts

1993-03-01
930282
A novel system for the forming of three dimensional sheet metal parts is described that can form a variety of part shapes without the need for fixed tooling, and given only geometry (CAD) information about the desired part. The central elements of this system are a tooling concept based on a programmable discrete die surface and closed-loop shape control. The former give the process the degrees of freedom to change shape rapidly, and the latter is used to insure that the correct shape is formed with a minimum of forming trials. A 540 kN (60 ton) lab press has been constructed with a 0.3 m (12 in) square pair of discrete tools that can be rapidly re-shaped between forming trials. The shape control system uses measured part shapes to determine a shape error and to correct the tooling shape. This correction is based on a unique “Deformation Transfer Function” approach using a spatial frequency decomposition of the surface.
Technical Paper

Optimal Forming of Aluminum 2008-T4 Conical Cups Using Force Trajectory Control

1993-03-01
930286
In this paper we investigate the optimal forming of conical cups of AL 2008-T4 through the use of real-time process control. We consider a flat, frictional binder the force of which can be determined precisely through closed-loop control. Initially the force is held constant throughout the forming of the cup, and various levels of force are tested experimentally and with numerical simulation. Excellent agreement between experiment and simulation is observed. The effects of binder force on cup shape, thickness distribution, failure mode and cup failure height are investigated, and an “optimal” constant binder force is determined. For this optimal case, the corresponding punch force is recorded as a function of punch displacement and is used in subsequent closed-loop control experiments. In addition to the constant force test, a trial variable binder force test was performed to extend the failure height beyond that obtained using the “optimal” constant force level.
Technical Paper

Draw Bead Penetration as a Control Element of Material Flow

1993-03-01
930517
Draw beads are widely utilized as a mechanism for providing proper restraining force to a sheet in a forming operation. In this paper, numerical simulations using the nonlinear finite element method are conducted to model the process of drawing a sheet through various draw bead configurations to study the mechanics of draw bead restraint. By examing the sensitivity of the draw bead restraining force due to the change of the draw bead penetration, the work shows that the penetration has the potential to be a very good element for varying and controlling restraining force during the process. A closed-loop feedback control of draw bead penetration using a proportional-integral controller is achieved by the combination of the original finite element simulation and a special element which links penetration to a pre-defined restraining force trajectory.
Technical Paper

Assessment of Thin Thermal Barrier Coatings for I.C. Engines

1995-02-01
950980
This paper investigates theoretically the effects of heat transfer characteristics, such as crank-angle phasing and wall temperature swings, on the thermodynamic efficiency of an IC engine. The objective is to illustrate the fundamental physical basis of applying thin thermal barrier coatings to improve the performance of military and commercial IC engines. A simple model illustrates how the thermal impedance and thickness of coatings can be manipulated to control heat transfer and limit the high temperatures in engine components. A friction model is also included to estimate the overall improvement in engine efficiency by the proper selection of coating thickness and material.
Technical Paper

Predicting Product Manufacturing Costs from Design Attributes: A Complexity Theory Approach

1996-02-01
960003
This paper contains both theorems and correlations based on the idea that there is a uniform metric for measuring the complexity of mechanical parts. The metric proposed is the logarithm of dimension divided by tolerance. The theorems prove that, on the average, for a given manufacturing process, the time to fabricate is simply proportional to this metric. We show corrleations for manual turning (machine lathe process), manual milling (machine milling process), and the lay-up of composite stringers. In each case the accuracy of the time estimate is as good as that of traditional cost estimation methods, but the effort is much less. The coefficient for composite lay-up compares well to that obtained from basic physiological data (Fitts Law).
X