Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

AHSS Shear Fracture Predictions Based on a Recently Developed Fracture Criterion

2010-04-12
2010-01-0988
One of the issues in stamping of advanced high strength steels (AHSS) is the stretch bending fracture on a sharp radius (commonly referred to as shear fracture). Shear fracture typically occurs at a strain level below the conventional forming limit curve (FLC). Therefore it is difficult to predict in computer simulations using the FLC as the failure criterion. A modified Mohr-Coulomb (M-C) fracture criterion has been developed to predict shear fracture. The model parameters for several AHSS have been calibrated using various tests including the butter-fly shaped shear test. In this paper, validation simulations are conducted using the modified (M-C) fracture criterion for a dual phase (DP) 780 steel to predict fracture in the stretch forming simulator (SFS) test and the bending under tension (BUT) test. Various deformation fracture modes are analyzed, and the range of usability of the criterion is identified.
Technical Paper

A Numerical Model for Piston Pin Lubrication in Internal Combustion Engines

2020-09-15
2020-01-2228
As the piston pin works under significant mechanical load, it is susceptible to wear, seizure, and structural failure, especially in heavy duty internal combustion engines. It has been found that the friction loss associated with the pin is comparable to that of the piston, and can be reduced when the interface geometry is properly modified. However, the mechanism that leads to such friction reduction, as well as the approaches towards further improvement, remain unknown. This work develops a piston pin lubrication model capable of simulating the interaction between the pin, the piston, and the connecting rod. The model integrates dynamics, solid contact, oil transport, and lubrication theory, and applies an efficient numerical scheme with second order accuracy to solve the highly stiff equations. As a first approach, the current model assumes every component to be rigid.
Journal Article

Identification of True Stress-Strain Curve of Thermoplastic Polymers under Biaxial Tension

2016-04-05
2016-01-0514
This article is concerned with identification of true stress-strain curve under biaxial tension of thermoplastic polymers. A new type of biaxial tension attachment was embedded first in a universal material test machine, which is able to transform unidirectional loading of the test machine to biaxial loading on the specimen with constant velocity. Cruciform specimen geometry was optimized via FE modeling. Three methods of calculating true stress in biaxial tension tests were compared, based on incompressibility assumption, linear elastic theory and inverse engineering method, respectively. The inverse engineering method is more appropriate for thermoplastic polymers since it considers the practical volume change of the material during biaxial tension deformation. The strategy of data processing was established to obtain biaxial tension true stress-strain curves of different thermoplastic polymers.
Journal Article

On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

2017-03-28
2017-01-0950
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications.
Technical Paper

Numerical Investigation of Diesel-Spray-Orientated Piston Bowls on Natural Gas and Diesel Dual Fuel Combustion Engine

2020-04-14
2020-01-0311
Low combustion efficiency and high hydrocarbon emissions at low loads are key issues of natural gas and diesel (NG-diesel) dual fuel engines. For better engine performance, two diesel-spray-orientated (DSO) bowls were developed based on the existing diesel injector of a heavy-duty diesel engine with the purpose of placing more combustible natural gas/air mixture around the diesel spray jets. A protrusion-ring was designed at the rim of the piston bowl to enhance the in-cylinder flame propagation. Numerical simulations were conducted for a whole engine cycle at engine speed of 1200 r/min and indicated mean effective pressure (IMEP) of 0.6 MPa. Extended coherent flame model 3 zones (ECFM-3Z) combustion model with built-in soot emissions model was employed. Simulation results of the original piston bowl agreed well with the experimental data, including in-cylinder pressure and heat released rate (HRR), as well as soot and methane emissions.
Technical Paper

Modeling the Spark Ignition Engine Warm-Up Process to Predict Component Temperatures and Hydrocarbon Emissions

1991-02-01
910302
In order to understand better the operation of spark-ignition engines during the warm-up period, a computer model had been developed which simulates the thermal processes of the engine. This model is based on lumped thermal capacitance methods for the major engine components, as well as the exhaust system. Coolant and oil flows, and their respective heat transfer rates are modeled, as well as friction heat generation relations. Piston-liner heat transfer is calculated based on a thermal resistance method, which includes the effects of piston and ring material and design, oil film thickness, and piston-liner crevice. Piston/liner crevice changes are calculated based on thermal expansion rates and are used in conjunction with a crevice-region unburned hydrocarbon model to predict the contribution to emissions from this source.
Journal Article

Numerical Analysis of a Downsized 2-Stroke Uniflow Engine

2014-10-01
2014-01-9051
In order to optimize the 2-stroke uniflow engine performance on vehicle applications, numerical analysis has been introduced, 3D CFD model has been built for the optimization of intake charge organization. The scavenging process was investigated and the intake port design details were improved. Then the output data from 3D CFD calculation were applied to a 1D engine model to process the analysis on engine performance. The boost system optimization of the engine has been carried out also. Furthermore, a vehicle model was also set up to investigate the engine in-vehicle performance.
Journal Article

Oil Transport from Scraper Ring Step to Liner at Low Engine Speeds and Effect of Dimensions of Scraper Ring Step

2016-04-05
2016-01-0495
In gasoline engines, a scraper ring with a step on the bottom outer edge is widely used as a second ring. However, there lacks a fundamental understanding on the effects of this feature and its dimensions on oil transport. Inspired by observations from visualization experiments, this work combining computational fluid dynamics (CFD) and theoretical analysis shows that oil can be trapped in the space bordered by a second ring step and the chamfer of a piston third land. The trapped oil can be released to a liner when the piston is approaching the top dead center (TDC). This additional oil on the liner becomes a potential source of oil consumption. Such oil transport has been observed at typically less than 1500rpm. Since road vehicles often operate in this speed range, the newly-observed oil trapping and release can be closely associated with oil consumption in gasoline engines. In this work, a comprehensive study on oil trapping and release will be demonstrated.
Technical Paper

Application of Model Fuels to Engine Simulation

2007-07-23
2007-01-1843
To address the growing need for detailed chemistry in engine simulations, new software tools and validated data sets are being developed under an industry-funded consortium involving members from the automotive and fuels industry. The results described here include systematic comparison and validation of detailed chemistry models using a wide range of fundamental experimental data, and the development of software tools that support the use of detailed mechanisms in engineering simulations. Such tools include the automated reduction of reaction mechanisms for targeted simulation conditions. Selected results are presented and discussed.
Technical Paper

Development of a Computational Method of Low Cycle Fatigue Prediction for Multi-Layer Surfaces under Rolling/Sliding Contact Conditions

2007-04-16
2007-01-0388
The application of tribologically enhanced coatings to automotive components is increasingly common. This paper highlights the development of a computational method used to simulate multi-layer coatings subjected to repeated mixed rolling / sliding contact. Through simulation with ABAQUS and the application of a specially written external subroutine, the simulation method monitors the stress and strain states during the simulation against a number of criteria used to locate the point of material failure. The results from a number of rolling contact with coated samples are used to verify and refine the user subroutine with the aim to developing an accurate RCF prediction method.
Technical Paper

Achieving Design Target in the Presence of Functional Coupling

2007-04-16
2007-01-1208
The primary objective of design is to achieve the target value of its function. While principles and techniques of Robust Design address the issue of achieving target values in the presence of different types of variations and disturbances, there exists a unique challenge in achieving design targets when multiple response functions are interrelated. In order to overcome the challenge, we must avoid functional couplings and obtain the interrelationship structure as flexible as possible. In the Axiomatic Design process, such interrelationships are represented by coupling terms in a design matrix. From the targeting aspect of design, it is important to achieve a desirable design matrix structure to, first, avoid any functional coupling in a design matrix and, secondly, maximize allowable sequences of adjusting DPs.
Technical Paper

Engine Wear Modeling with Sensitivity to Lubricant Chemistry: A Theoretical Framework

2007-04-16
2007-01-1566
The life of an automotive engine is often limited by the ability of its components to resist wear. Zinc dialkyldithiophosphate (ZDDP) is an engine oil additive that reduces wear in an engine by forming solid antiwear films at points of moving contact. The effects of this additive are fairly well understood, but there is little theory behind the kinetics of antiwear film formation and removal. This lack of dynamic modeling makes it difficult to predict the effects of wear at the design stage for an engine component or a lubricant formulation. The purpose of this discussion is to develop a framework for modeling the formation and evolution of ZDDP antiwear films based on the relevant chemical pathways and physical mechanisms at work.
Technical Paper

Trail-Braking Driver Input Parameterization for General Corner Geometry

2008-01-02
2008-01-2986
Trail-Braking (TB) is a common cornering technique used in rally racing to negotiate tight corners at (moderately) high speeds. In a previous paper by the authors it has been shown that TB can be generated as the solution to the minimum-time cornering problem, subject to fixed final positioning of the vehicle after the corner. A TB maneuver can then be computed by solving a non-linear programming (NLP). In this work we formulate an optimization problem by relaxing the final positioning of the vehicle with respect to the width of the road in order to study the optimality of late-apex trajectories typically followed by rally drivers. We test the results on a variety of corners. The optimal control inputs are approximated by simple piecewise linear input profiles defined by a small number of parameters. It is shown that the proposed input parameterization can generate close to optimal TB along the various corner geometries.
Technical Paper

Modeling Costs and Fuel Economy Benefits of Lightweighting Vehicle Closure Panels

2008-04-14
2008-01-0370
This paper illustrates a methodology in which complete material-manufacturing process cases for closure panels, reinforcements, and assembly are modeled and compared in order to identify the preferred option for a lightweight closure design. First, process-based cost models are used to predict the cost of lightweighting the closure set of a sample midsized sports utility vehicle (SUV) via material and process substitution. Weight savings are then analyzed using a powertrain simulation to understand the impact of lightweighting on fuel economy. The results are evaluated in the context of production volume and total mass change.
Technical Paper

An EVA Mission Planning Tool based on Metabolic Cost Optimization

2009-07-12
2009-01-2562
An extravehicular activity (EVA) path-planning and navigation tool, called the Mission Planner, has been developed to assist with pre-mission planning, scenario simulation, real-time navigation, and contingency replanning during astronaut EVAs, The Mission Planner calculates the most efficient path between user-specified waypoints. Efficiency is based on an exploration cost algorithm, which is a function of the estimated astronaut metabolic rate. Selection of waypoints and visualization of the generated path are realized within a 3D mapping interface through terrain elevation models. The Mission Planner is also capable of computing the most efficient path back home from any point along the path.
Technical Paper

Crash Safety of Lithium-Ion Batteries Towards Development of a Computational Model

2010-04-12
2010-01-1078
Battery packs for Hybrids, Plug-in Hybrids, and Electric Vehicles are assembled from a system of modules (sheets) with a tight sheet metal casing around them. Each module consists of an array of individual cells which vary in the composition of electrodes and separator from one manufacturer to another. In this paper a general procedure is outlined on the development of a constitutive and computational model of a cylindrical cell. Particular emphasis is placed on correct prediction of initiation and propagation of a tearing fracture of the steel can. The computational model correctly predicts rupture of the steel can which could release aggressive chemicals, fumes, or spread the ignited fire to the neighboring cells. The initiation site of skin fracture depends on many factors such as the ductility of the casing material, constitutive behavior of the system of electrodes, and type of loading.
Technical Paper

Numerical Studies on the Production of Variable Thickness Aluminium Tubes for Transportation Purposes

2010-04-12
2010-01-0224
Nowadays application of light alloys like aluminium in automobile industry has found a striking role. Higher strength over weight ratio which causes lower fuel consumption seems to be the first reason. Also some other reasons like ease of manufacturing, protection against corrosion and ease of recycling are other motivations for car designers to use various aluminium alloys as much as possible. Due to lack of variable thickness tubes, they have not found a lot of applications in the car component design. This paper aims to introduce these types of tubes to automotive industry. Also these tubes are one of the essential elements in the complementary processes like tube hydroforming and cause ease of production and decreasing risk of scrap in manufacturing cycles.
Technical Paper

Development and Applications of an Analytical Tool for Piston Ring Design

2003-10-27
2003-01-3112
A comprehensive and robust analytical tool was developed to study three-dimensional (3D) ring-bore and ring-groove interactions for piston rings with either symmetric or asymmetric cross-section. The structural response of the ring is modeled with 3D finite element beam method, and the interfaces between the ring and the bore as well as between the ring and the groove are modeled with a simple asperity contact model. Given the ring free shape and the geometry of the cross-section, this analytical tool can be used to evaluate the ring-bore and ring-groove conformability as well as ring twist angle distribution under different constraints. Conversely, this tool can be used to calculate the free shape to provide the desired ring-bore contact pressure distribution for specific applications.
Technical Paper

Axiomatic Design of Automobile Suspension and Steering Systems: Proposal for a Novel Six-Bar Suspension

2004-03-08
2004-01-0811
The existing vehicle designs exhibit a high level of coupling. For instance the coupling in the suspension and steering systems manifests itself through the change in wheel alignment parameters (WAP) due to suspension travel. This change in the WAP causes directional instability and tire-wear. The approach of the industry to solve this problem has been twofold. The first approach has been optimization of suspension link lengths to reduce the change in WAP to zero. Since this is not possible with the existing architecture, the solution used is the optimization of the spring stiffness K to get a compromise solution for comfort (which requires significant suspension travel and hence a soft spring) and directional stability (which demands least possible change in wheel alignment parameters and hence a stiff spring).
Technical Paper

Modeling NO Formation in Spark Ignition Engines with a Layered Adiabatic Core and Combustion Inefficiency Routine

2001-03-05
2001-01-1011
A thermodynamic based cycle simulation which uses a thermal boundary layer, either, a fully mixed or layered adiabatic core, and a crevice combustion inefficiency routine has been used to explore the sensitivity of NO concentration predictions to critical physical modeling assumptions. An experimental database, which included measurements of residual gas fraction, was obtained from a 2.0 liter Nissan engine while firing on propane. A model calibration methodology was developed to ensure accurate predictions of in-cylinder pressure and burned gas temperature. Comparisons with experimental NO data then showed that accounting for temperature stratification during combustion with a layered adiabatic core and including a crevice/combustion inefficiency routine, improved the match of modeling predictions to data, in comparison to a fully mixed adiabatic core.
X