Refine Your Search

Topic

Author

Search Results

Journal Article

Development of Hardware-In-the-Loop Simulation System for Steering Evaluation Using Multibody Kinematic Analysis

2014-04-01
2014-01-0086
The adoption of the electronic controlled steering systems with new technologies has been extended in recent years. They have interactions with other complex vehicle subsystems and it is a hard task for the vehicle developer to find the best solution from huge number of the combination of parameter settings with track tests. In order to improve the efficiency of the steering system development, the authors had developed a steering bench test method for steering system using a Hardware-In-the-Loop Simulation (HILS). In the steering HILS system, vehicle dynamics simulation and the tie rod axial force calculation are required at the same time in the real-time simulation environment. The accuracy of the tie rod axial force calculation is one of the key factors to reproduce the vehicle driving condition. But the calculation cannot be realized by a commercial software for the vehicle dynamics simulation.
Technical Paper

The Development of JASO GLV-1 Next Generation Low Viscosity Automotive Gasoline Engine Oils Specification

2020-04-14
2020-01-1426
It is well understood that using lower viscosity engine oils can greatly improve fuel economy [1, 2, 3, 4]. However, it has been impossible to evaluate ultra-low viscosity engine oils (SAE 0W-12 and below) utilizing existing fuel economy test methods. As such, there is no specification for ultra-low viscosity gasoline engine oils [5]. We therefore developed firing and motored fuel economy test methods for ultra-low viscosity oils using engines from Japanese automakers [6, 7, 8]. This was done under the auspices of the JASO Next Generation Engine Oil Task Force (“TF” below), which consists mainly of Japanese automakers and entities working in the petroleum industry. Moreover, the TF used these test methods to develop the JASO GLV-1 specification for next-generation ultra-low viscosity automotive gasoline engine oils such as SAE 0W-8 and 0W-12. In developing the JASO GLV-1 specification, Japanese fuel economy tests and the ILSAC engine tests for evaluating engine reliability were used.
Journal Article

Electric Drive Transient Behavior Modeling: Comparison of Steady State Map Based Offline Simulation and Hardware-in-the-Loop Testing

2017-03-28
2017-01-1605
Electric drives, whether in battery electric vehicles (BEVs) or various other applications, are an important part of modern transportation. Traditionally, physics-based models based on steady-state mapping of electric drives have been used to evaluate their behavior under transient conditions. Hardware-in-the-Loop (HIL) testing seeks to provide a more accurate representation of a component’s behavior under transient load conditions that are more representative of real world conditions it will operate under, without requiring a full vehicle installation. Oak Ridge National Laboratory (ORNL) developed such a HIL test platform capable of subjecting electric drives to both conventional steady-state test procedures as well as transient experiments such as vehicle drive cycles.
Journal Article

Failure Stress and Apparent Elastic Modulus of Diesel Particulate Filter Ceramics

2012-04-16
2012-01-1252
Three established mechanical test specimen geometries and test methods used to evaluate mechanical properties of brittle materials are adapted to the diesel particulate filter (DPF) architecture to evaluate failure initiation stress and apparent elastic modulus of the ceramics comprising DPFs. The three custom-designed test coupons are harvested out of DPFs to promote a particular combination of orientation of crack initiation and crack plane. The testing of the DPF biaxial flexure disk produces a radial tensile stress and a crack plane parallel with the DPF's longitudinal axis. The testing of the DPF sectored flexural specimen produces axial tension at the DPF's OD and a crack plane perpendicular to the DPF's longitudinal axis. The testing of the DPF o-ring specimen produces hoop tension at the DPF's original outer diameter (OD) and at the inner diameter of the test coupon, and a crack plane parallel to the DPF's longitudinal axis.
Technical Paper

Analysis of Thermal Fatigue Resistance of Engine Exhaust Parts

1991-02-01
910430
The thermal fatigue resistance of engine exhaust system parts has conventionally been evaluated in thermal fatigue tests conducted with a restrained specimen. However, the test results have not always been consistent with data obtained in engine endurance tests. Two new evaluation methods have been developed to overcome this problem. One is a method of predicting thermal fatigue life on the basis of nonlinear elastic and plastic thermal analyses performed with a finite element model and the ABAQUS program. The other is a method of evaluating exhaust system parts using an exhaust system simulator. This paper describes the concepts underlying the two methods and their relative advantages.
Journal Article

Sensitivity Analysis of Ash Packing and Distribution in Diesel Particulate Filters to Transient Changes in Exhaust Conditions

2012-04-16
2012-01-1093
Current CJ-4 lubricant specifications place chemical limits on diesel engine oil formulations to minimize the accumulation of lubricant-derived ash in diesel particulate filters (DPF). While lubricant additive chemistry plays a strong role in determining the amount and type of ash accumulated in the DPF, a number of additional factors play important roles as well. Relative to soot particles, whose residence time in the DPF is short-lived, ash particles remain in the filter for a significant fraction of the filter's useful life. While it is well-known that the properties (packing density, porosity, permeability) of soot deposits are primarily controlled by the local exhaust conditions at the time of particle deposition in the DPF, the cumulative operating history of the filter plays a much stronger role in controlling the properties and distribution of the accumulated ash.
Technical Paper

Experimental Determination of an Engine's Inertial Properties

2007-05-15
2007-01-2291
Determination of an engine's inertial properties is critical during vehicle dynamic analysis and the early stages of engine mounting system design. Traditionally, the inertia tensor can be determined by torsional pendulum method with a reasonable precision, while the center of gravity can be determined by placing it in a stable position on three scales with less accuracy. Other common experimental approaches include the use of frequency response functions. The difficulty of this method is to align the directions of the transducers mounted on various positions on the engine. In this paper, an experimental method to estimate an engine's inertia tensor and center of gravity is presented. The method utilizes the traditional torsional pendulum method, but with additional measurement data. With this method, the inertia tensor and center of gravity are estimated in a least squares sense.
Technical Paper

Joint PAJ/JAMA Project - Development of a JASO Gasoline Bench Engine Test for Measuring CCDs

1997-10-01
972837
Detergent additives in automotive gasoline fuel are mainly designed to reduce deposit formation on intake valves and fuel injectors, but it has been reported that some additives may contribute to CCD formation. Therefore, a standardized bench engine test method for CCDs needs to be developed in response to industry demands. Cooperative research between the Petroleum Association of Japan (PAJ) and the Japan Automobile Manufacturers Association, Inc. (JAMA), has led to the development of a 2.2L Honda engine dynamometer-based CCD test procedure to evaluate CCDs from fuel additives. Ten automobile manufacturers, nine petroleum companies and the Petroleum Energy Center joined the project, which underwent PAJ-JAMA round robin testing. This paper describes the CCD test development activities, which include the selection of an engine and the determination of the optimum test conditions and other test criteria.
Technical Paper

The Effect of Belt-Drive CVT Fluid on the Friction Coefficient Between Metal Components

1997-10-01
972921
A block-on-ring friction and wear testing machine (LFW-1) was used as a test method for making fundamental evaluations of the effect of the Belt-Drive Continuously Variable Transmission(B-CVT) fluid on the friction coefficient between the belt and pulleys. The results confirmed that this method can simulate the friction phenomena between the belt and pulleys of an actual transmission. The mechanism whereby ZDDP and some Ca detergents improve the torque capacity of a B-CVT was also investigated along with the effect of the deterioration of these additives on the friction coefficient. It was found that these additives form a film, 80-90 nm in thickness, on the sliding surface, which is effective in increasing the friction coefficient. The friction coefficient declined with increasing additive deterioration. The results of a 31P-NMR analysis indicated that the decline closely correlated with the amount of ZDDP in the B-CVT fluid.
Technical Paper

Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower

2007-10-29
2007-01-3994
Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp (112 kW) on gasoline and a 20% increase to 180 hp (134 kW) on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles.
Technical Paper

Development of a Headway Distance Control System

1998-02-01
980616
This paper describes a headway distance control system for platoon driving on an automated highway system (AHS). The system implemented on a test vehicle is described first, followed by a description of a vehicle control method based on the use of throttle and brake actuators. This method makes it possible to obtain the target acceleration and deceleration regardless of the vehicle speed range and the rate of acceleration or deceleration. Experimental and simulation results obtained with this method are presented. A control method is then described that uses inter-vehicle communication and laser radar to maintain a constant headway between vehicles. The results of simulations and driving tests conducted with three vehicles are presented to illustrate that the use of inter-vehicle communication is highly effective in improving headway control performance.
Technical Paper

Stamping Effect on Oil Canning and Dent Resistance Performances of an Automotive Roof Panel

2007-04-16
2007-01-1696
The objective of this paper is to investigate the effect of stamping process on oil canning and dent resistance performances of an automotive roof panel. Finite element analysis of stamping processes was carried out using LS-Dyna to obtain thickness and plastic strain distributions under various forming conditions. The forming results were mapped onto the roof model by an in-house developed mapping code. A displacement control approach using an implicit FEM code ABAQUS/Standard was employed for oil canning and denting analysis. An Auto/Steel Partnership Standardized Test Procedure for Dent Resistance was employed to establish the analysis model and to determine the dent and oil canning loads. The results indicate that stamping has a positive effect on dent resistance and a negative effect on oil canning performance. As forming strains increase, dent resistance increases while the oil canning load decreases.
Technical Paper

Development of a Slip Speed Control System for a Lock-Up Clutch (Part II)

2008-04-14
2008-01-0001
A new control system for the coasting range was designed with the μ-synthesis technique to achieve robust stability, based on the slip speed control system that was reported in our previous paper.(1) The results of driving tests conducted with the fuel supply cut off while coasting confirm that the new control system is able to avoid engine stall even under sudden hard braking on a low friction road (μ<0.1) at a vehicle speed of 20 km/h and a turbine speed of 1000 rpm. The system also allows the lock-up clutch to slip stably at a certain target slip speed at anytime while coasting and achieves robust performance against characteristic variations of the lock-up mechanism. This slip speed control system thus makes it possible to extend the fuel cut-off range to a lower engine speed of 800 rpm, down from 950 rpm, thereby improving fuel economy by about 1%.
Technical Paper

Testing Elastomers - Can Correlation Be Achieved Between Machines, Load Cells, Fixtures and Operators?

2001-04-30
2001-01-1443
At present, testing elastomeric parts is performed at a level dictated by the users of the testing equipment. No society or testing group has defined a formal standard of testing or a way to calibrate a testing machine. This is in part due to the difficulty involved with testing a material whose properties are in a constant state of flux. To further complicate this issue, testing equipment, testing procedures, fixtures, and a host of other variables including the operators themselves, all can have an impact on the characterization of elastomers. The work presented in this paper looks at identifying some of the variables of testing between machines, load cells, fixtures and operators. It also shows that correlation can be achieved and should be performed between companies to ensure data integrity.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Emissions From a 5.9 Liter Diesel Engine Fueled With Ethanol Diesel Blends

2001-05-07
2001-01-2018
A certification diesel fuel and blends containing 10 and 15 volume % ethanol were tested in a 5.9-liter Cummins B Series engine. For each fuel blend, an 8-mode AVL test cycle was performed. The resulting emissions were characterized and measured for each individual test mode (prescribed combination of engine speed and load). These individual mode results are used to create a weighted average that is designed to approximate the results of the Heavy-Duty Transient Federal Test Procedure. The addition of ethanol was observed to have no noticeable effect on the emission of NOx but produced small increases in CO and HC. However, the particulate matter was observed to decrease 20% and 30% with the addition of 10% and 15% ethanol, respectively.
Technical Paper

Performance of a NOX Adsorber and Catalyzed Particle Filter System on a Light-Duty Diesel Vehicle

2001-05-07
2001-01-1933
A prototype emissions control system consisting of a close-coupled lightoff catalyst, catalyzed diesel particle filter (CDPF), and a NOX adsorber was evaluated on a Mercedes A170 CDI. This laboratory experiment aimed to determine whether the benefits of these technologies could be utilized simultaneously to allow a light-duty diesel vehicle to achieve levels called out by U.S. Tier 2 emissions legislation. This research was carried out by driving the A170 through the U.S. Federal Test Procedure (FTP), US06, and highway fuel economy test (HFET) dynamometer driving schedules. The vehicle was fueled with a 3-ppm ultra-low sulfur fuel. Regeneration of the NOX adsorber/CDPF system was accomplished by using a laboratory in-pipe synthesis gas injection system to simulate the capabilities of advanced engine controls to produce suitable exhaust conditions. The results show that these technologies can be combined to provide high pollutant reduction efficiencies in excess of 90% for NOX and PM.
Technical Paper

Clamp Load Consideration in Fatigue Life Prediction of a Cast Aluminum Wheel Using Finite Element Analysis

2004-03-08
2004-01-1581
Loads generated during assembly may cause significant stress levels in components. Under test conditions, these stresses alter the mean stress which in turn, alters the fatigue life and critical stress area of the components as well. This paper describes the Finite Element Analysis (FEA) procedure to evaluate behavior of a cast aluminum wheel subjected to the rotary fatigue test condition as specified in the SAE test procedure (SAE J328 JUN94). Fatigue life of the wheel is determined using the S-N approach for a constant reversed loading condition. In addition, fatigue life predictions with and without clamp loads are compared. It is concluded that the inclusion of clamp load is necessary for better prediction of the critical stress areas and fatigue life of the wheel.
Technical Paper

Driving Workload Comparison Between Older and Younger Drivers Using the Steering Entropy Method

2002-07-09
2002-01-2080
In this study, an attempt was made to apply the steering entropy method, proposed by Boer and Nakayama as a workload measurement technique, to a comparative evaluation of the workload of older and younger drivers. As the first step, driving simulator tests were conducted to examine a method of making comparisons between subjects whose driving performance differed. The same method was then used in making evaluations during driving tests conducted with an actual vehicle. Under the conditions used in this study, the results indicate that it should be possible to compare driving workloads among different subjects through the combined used of Hp and α. Hp is a quantified value of steering perturbation as an information entropy value that is calculated from a time history of steering angle data. It changes between 0 (no steering perturbation) and 1 (absolute randomness) in a theoretical sense.
Technical Paper

Tribological Characteristics of Electrolytic Coatings for Aluminum Engine Cylinder Lining Applications

2002-03-04
2002-01-0490
The friction and wear characteristics of three commercially-available, electrolytic coatings for aluminum engine cylinder bores were compared to those of cast iron liners. A Ni/SiC electrocomposite, a hard anodized treatment, and a Plasma Electrolytic Oxidation (PEO) coating were investigated. ASTM standard test method G133-95, non-firing test method, for linearly reciprocating sliding wear was modified to use segments of piston rings and cylinder liners. Tests were conducted using Mr. Goodwrench™ 5W30 as a lubricant at room temperature. The normal force was 150N, the reciprocating frequency was 15Hz, the stroke length was 8mm, and the test duration was 60 minutes. Kinetic friction coefficients ranged from 0.1 to 0.22, typical of boundary lubrication. The Ni/SiC and cast iron samples exhibited the lowest friction. The wear resistance of the Ni/SiC coating was superior to that of cast iron.
X