Refine Your Search

Topic

Author

Search Results

Journal Article

Speciated Engine-Out Organic Gas Emissions from a PFI-SI Engine Operating on Ethanol/Gasoline Mixtures

2009-11-02
2009-01-2673
Engine-out HC emissions from a PFI spark ignition engine were measured using a gas chromatograph and a flame ionization detector (FID). Two port fuel injectors were used respectively for ethanol and gasoline so that the delivered fuel was comprised of 0, 25, 50, 75 and 100% (by volume) of ethanol. Tests were run at 1.5, 3.8 and 7.5 bar NIMEP and two speeds (1500 and 2500 rpm). The main species identified with pure gasoline were partial reaction products (e.g. methane and ethyne) and aromatics, whereas with ethanol/gasoline mixtures, substantial amounts of ethanol and acetaldehyde were detected. Indeed, using pure ethanol, 74% of total HC moles were oxygenates. In addition, the molar ratio of ethanol to acetaldehyde was determined to be 5.5 to 1. The amount (as mole fraction of total HC moles) of exhaust aromatics decreased linearly with increasing ethanol in the fuel, while oxygenate species correspondingly increased.
Journal Article

Study of On-Board Ammonia (NH3) Generation for SCR Operation

2010-04-12
2010-01-1071
Mechanisms of NH₃ generation using LNT-like catalysts have been studied in a bench reactor over a wide range of temperatures, flow rates, reformer catalyst types and synthetic exhaust-gas compositions. The experiments showed that the on board production of sufficient quantities of ammonia on board for SCR operation appeared feasible, and the results identified the range of conditions for the efficient generation of ammonia. In addition, the effects of reformer catalysts using the water-gas-shift reaction as an in-situ source of the required hydrogen for the reactions are also illustrated. Computations of the NH₃ and NOx kinetics have also been carried out and are presented. Design and impregnation of the SCR catalyst in proximity to the ammonia source is the next logical step. A heated synthetic-exhaust gas flow bench was used for the experiments under carefully controlled simulated exhaust compositions.
Journal Article

Impact of Hydrocarbons on the Dual (Oxidation and SCR) Functions of Ammonia Oxidation Catalysts

2014-04-01
2014-01-1536
Ammonia oxidation (AMOX) catalysts are critical parts of most diesel aftertreatment systems around the world. These catalysts are positioned downstream of selective catalytic reduction (SCR) catalysts and remove unreacted NH3 that passes through the SCR catalyst. In many configurations, the AMOX catalyst is situated after a diesel oxidation catalyst and catalyzed diesel particulate filter that oxidize CO and hydrocarbons. However, in Euro V and proposed Tier 4 final aftertreatment architectures there is no upstream oxidation catalyst. In this study, the impact of hydrocarbons is evaluated on two different types of AMOX catalysts. One has dual washcoat layers-SCR washcoat on top of PGM washcoat-and the other has only a PGM washcoat layer. Results are presented for NH3 and hydrocarbon oxidation, NOx and N2O selectivity, and hydrocarbon storage. The AMOX findings are rationalized in terms of their impact on the individual oxidation and SCR functions.
Journal Article

Desulfation of Pd-based Oxidation Catalysts for Lean-burn Natural Gas and Dual-fuel Applications

2015-04-14
2015-01-0991
Lean-burn natural gas (NG) engines are used world-wide for both stationary power generation and mobile applications ranging from passenger cars to Class 8 line-haul trucks. With the recent introduction of hydraulic fracturing gas extraction technology and increasing availability of natural gas, these engines are receiving more attention. However, the reduction of unburned hydrocarbon emissions from lean-burn NG and dual-fuel (diesel and natural gas) engines is particularly challenging due to the stability of the predominant short-chain alkane species released (e.g., methane, ethane, and propane). Supported Pd-based oxidation catalysts are generally considered the most active materials for the complete oxidation of low molecular weight alkanes at temperatures typical of lean-burn NG exhaust. However, these catalysts rapidly degrade under realistic exhaust conditions with high water vapor concentrations and traces of sulfur.
Journal Article

Conversion of Short-Chain Alkanes by Vanadium-Based and Cu/Zeolite SCR Catalysts

2016-04-05
2016-01-0913
The oxidation of short-chain alkanes, such as methane, ethane, and propane, from the exhaust of lean-burn natural gas and lean-burn dual-fuel (natural gas and diesel) engines poses a unique challenge to the exhaust aftertreatment community. Emissions of these species are currently regulated by the US Environmental Protection Agency (EPA) as either methane (Greenhouse Gas Emissions Standards) or non-methane hydrocarbon (NMHC). However, the complete catalytic oxidation of short-chain alkanes is challenging due to their thermodynamic stability. The present study focuses on the oxidation of short-chain alkanes by vanadium-based and Cu/zeolite selective catalytic reduction (SCR) catalysts, generally utilized to control NOx emissions from lean-burn engines. Results reveal that these catalysts are active for short-chain alkane oxidation, albeit, at conversions lower than those generally reported in the literature for Pd-based catalysts, typically used for short-chain alkane conversion.
Journal Article

Assessment of Gasoline Direct Injection Engine Cold Start Particulate Emission Sources

2017-03-28
2017-01-0795
The gasoline direct injection (GDI) engine particulate emission sources are assessed under cold start conditions: the fast idle and speed/load combinations representative of the 1st acceleration in the US FTP. The focus is on the accumulation mode particle number (PN) emission. The sources are non-fuel, combustion of the premixed charge, and liquid fuel film. The non-fuel emissions are measured by operating the engine with premixed methane/air or hydrogen/air. Then the PN level is substantially lower than what is obtained with normal GDI operation; thus non-fuel contribution to PN is small. When operating with stoichiometric premixed gasoline/air, the PN level is comparable to the non-fuel level; thus premixed-stoichiometric mixture combustion does not significantly generate particulates. For fuel rich premixed gasoline/air, PN increases dramatically when lambda is less than 0.7 to 0.8.
Journal Article

Impact of Hydrothermal Aging on the Formation and Decomposition of Ammonium Nitrate on a Cu/zeolite SCR Catalyst

2017-03-28
2017-01-0946
Low-temperature (T ≤ 200°C) NOx conversion is receiving increasing research attention due to continued potential reductions in regulated NOx emissions from diesel engines. At these temperatures, ammonium salts (e.g., ammonium nitrate, ammonium (bi)sulfate, etc.) can form as a result of interactions between NH3 and NOx or SOx, respectively. The formation of these salts can reduce the availability of NH3 for NOx conversion, block active catalyst sites, and result in the formation of N2O, a regulated Greenhouse Gas (GHG). In this study, we investigate the effect of hydrothermal aging on the formation and decomposition of ammonium nitrate on a state-of-the-art Cu/zeolite selective catalytic reduction (SCR) catalyst. Reactor-based constant-temperature ammonium nitrate formation, temperature programmed oxidation (TPO), and NO titration experiments are used to characterize the effect of hydrothermal aging from 600 to 950°C.
Journal Article

Understanding System- and Component-Level N2O Emissions from a Vanadium-Based Nonroad Diesel Aftertreatment System

2017-03-28
2017-01-0987
Nitrous oxide (N2O), with a global warming potential (GWP) of 297 and an average atmospheric residence time of over 100 years, is an important greenhouse gas (GHG). In recognition of this, N2O emissions from on-highway medium- and heavy-duty diesel engines were recently regulated by the US Environmental Protection Agency (EPA) and National Highway Traffic Safety Administration’s (NHTSA) GHG Emission Standards. Unlike NO and NO2, collectively referred to as NOx, N2O is not a major byproduct of diesel combustion. However, N2O can be formed as a result of unselective catalytic reactions in diesel aftertreatment systems, and the mitigation of this unintended N2O formation is a topic of active research. In this study, a nonroad Tier 4 Final/Stage IV engine was equipped with a vanadium-based selective catalytic reduction (SCR) aftertreatment system. Experiments were conducted over nonroad steady and both cold and hot transient cycles (NRSC and NRTC, respectively).
Journal Article

Particulate Matter Emissions from a Direct Injection Spark Ignition Engine under Cold Fast Idle Conditions for Ethanol-Gasoline Blends

2011-04-12
2011-01-1305
The engine out particular matter number (PN) distributions at engine coolant temperature (ECT) of 0° C to 40° C for ethanol/ gasoline blends (E0 to E85) have been measured for a direct-injection spark ignition engine under cold fast idle condition. For E10 to E85, PN increases modestly when the ECT is lowered. The distributions, however, are insensitive to the ethanol content of the fuel. The PN for E0 is substantially higher than the gasohol fuels at ECT below 20° C. The total PN values (obtained from integrating the PN distribution from 15 to 350 run) are approximately the same for all fuels (E0 to E85) when ECT is above 20° C. When ECT is decreased below 20° C, the total PN values for E10 to E85 increase modestly, and they are insensitive to the ethanol content. For E0, however, the total PN increases substantially. This sharp change in PN from E0 to E10 is confirmed by running the tests with E2.5 and E5. The midpoint of the transition occurs at approximately E5.
Journal Article

Methods for Quantifying the Release of Vanadium from Engine Exhaust Aftertreatment Catalysts

2012-04-16
2012-01-0887
Titanium dioxide supported vanadium oxide catalysts have been successfully utilized for the selective catalytic reduction (SCR) of nitrogen oxides emitted from both stationary and mobile sources. Because of their cost and performance advantages in certain applications, vanadium-based SCR catalysts are now also being considered for integration into some U.S. Tier IV off-highway aftertreatment systems. However, concern exists that toxic vanadium compounds, such as vanadium pentoxide, could be released from these catalysts as a result of mechanical attrition or high temperature volatility. An experimental study has been conducted to compare various techniques for measuring the release of particle and vapor-phase vanadium from SCR catalysts. Previous research has utilized a powder reactor-based method to measure the vapor-phase release of vanadium, but there are inherent limitations to this technique.
Journal Article

NOx Reduction Using a Dual-Stage Catalyst System with Intercooling in Vehicle Gasoline Engines under Real Driving Conditions

2018-04-03
2018-01-0335
Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is used in diesel-fueled mobile applications where urea is an added reducing agent. We show that the Ultera® dual-stage catalyst, with intercooling aftertreatment system, intrinsically performs the function of the SCR method in nominally stoichiometric gasoline vehicle engines without the need for an added reductant. We present that NOx is reduced during the low-temperature operation of the dual-stage system, benefiting from the typically periodic transient operation (acceleration and decelerations) with the associated swing in the air/fuel ratio (AFR) inherent in mobile applications, as commonly expected and observed in real driving. The primary objective of the dual-stage aftertreatment system is to remove non-methane organic gases (NMOG) and carbon monoxide (CO) slip from the vehicle’s three-way catalyst (TWC) by oxidizing these constituents in the second stage catalyst.
Journal Article

The Dynamics of Methane and NOx Removal by a Three-Way Catalyst: A Transient Response Study

2018-04-03
2018-01-1270
Natural gas-powered engines are widely used due to their low fuel cost and in general their lower emissions than conventional diesel engines. In order to comply with emissions regulations, an aftertreatment system is utilized to treat exhaust from natural gas engines. Stoichiometric burn natural gas engines use three-way catalyst (TWC) technology to simultaneously remove NOx, CO, and hydrocarbon (HC). Removal of methane, one of the major HC emissions from natural gas engines, is difficult due to its high stability, posing a challenge for existing TWC technologies. In this work, degreened (DG), standard bench cycle (SBC)-aged TWC catalysts and a DG Pd-based oxidation catalyst (OC) were evaluated and compared under a variety of lean/rich gas cycling conditions, simulating stoichiometric natural gas engine emissions.
Technical Paper

The Effects of Sulfated Ash, Phosphorus and Sulfur on Diesel Aftertreatment Systems - A Review

2007-07-23
2007-01-1922
This paper reviews the relevant literature on the effects of sulfated ash, phosphorus, and sulfur on DPF, LNT, and SCR catalysts. Exhaust backpressure increase due to DPF ash accumulation, as well as the rate at which ash is consumed from the sump, were the most studied lubricant-derived DPF effects. Based on several studies, a doubling of backpressure can be estimated to occur within 270,000 to 490,000 km when using a 1.0% sulfated ash oil. Postmortem DPF analysis and exhaust gas measurements revealed that approximately 35% to 65% less ash was lost from the sump than was expected based on bulk oil consumption estimates. Despite significant effects from lubricant sulfur and phosphorus, loss of LNT NOX reduction efficiency is dominated by fuel sulfur effects. Phosphorus has been determined to have a mild poisoning effect on SCR catalysts. The extent of the effect that lubricant phosphorus and sulfur have on DOCs remains unclear, however, it appears to be minor.
Technical Paper

A Study on the Emissions of Chemical Species from Heavy-Duty Diesel Engines and the Effects of Modern Aftertreatment Technology

2009-04-20
2009-01-1084
A comparative analysis was made on the emissions from a 2004 and a 2007 heavy-duty diesel engine to determine how new engine and emissions technologies have affected the chemical compounds found in the exhaust gases. Representative samples were collected from a source dilution sampling system and analyzed for both criteria and unregulated gaseous and particulate emissions. Results have shown that the 2007 regulations compliant engine and emissions technology not only reduced the specifically regulated exhaust pollutants, but also significantly reduced the majority of unregulated chemical species. It is believed that these reductions were achieved through the use of engine optimization, aftertreatment system integration, and ultra-low sulfur diesel fuel.
Technical Paper

Development and Validation of a Predictive Model for DEF Injection and Urea Decomposition in Mobile SCR DeNOx Systems

2010-04-12
2010-01-0889
Selective catalytic reduction (SCR) of oxides of nitrogen with ammonia gas is a key technology that is being favored to meet stringent NOx emission standards across the world. Typically, in this technology, a liquid mixture of urea and water - known as Diesel Exhaust Fluid (DEF) - is injected into the hot exhaust gases leading to atomization and subsequent spray processes. The water content vaporizes, while the urea content undergoes thermolysis and forms ammonia and isocyanic acid, that can form additional ammonia through hydrolysis. Due to the increasing interest in SCR technology, it is desirable to have capabilities to model these processes with reasonable accuracy to both improve the understanding of processes important to the aftertreatment and to aid in system optimization. In the present study, a multi-dimensional model is developed to simulate DEF spray processes and the conversion of urea to ammonia. The model is then implemented into a commercial CFD code.
Technical Paper

Alcohol Fueled Heavy Duty Vehicles Using Clean, High Efficiency Engines

2010-10-25
2010-01-2199
Non-petroleum based liquid fuels are essential for reducing oil dependence and greenhouse gas generation. Increased substitution of alcohol fuel for petroleum based fuels could be achieved by 1) use in high efficiency spark ignition engines that are employed for heavy duty as well as light duty operation and 2) use of methanol as well as ethanol. Methanol is the liquid fuel that is most efficiently produced from thermo-chemical gasification of coal, natural gas, waste or biomass. Ethanol can also be produced by this process but at lower efficiency and higher cost. Coal derived methanol is in limited initial use as a transportation fuel in China. Methanol could potentially be produced from natural gas at an economically competitive fuel costs, and with essentially the same greenhouse gas impact as gasoline. Waste derived methanol could also be an affordable low carbon fuel.
Technical Paper

Dramatic Emissions Reductions with a Direct Injection Diesel Engine Burning Supercritical Fuel/Water Mixtures

2001-09-24
2001-01-3526
Research conducted at the Supercritical (SC) facility of MIT's Energy Laboratory provided visual confirmation of a single phase, homogeneous water/fuel mixture near the critical temperature and pressure of water. Equal volumes of water and diesel fuel were observed to be completely miscible, and high temperature polymerization of fuel molecules was not found. This is believed to be the first observation of a solution of diesel fuel and water. This mixture was subsequently burned under atmospheric spray conditions with very low NOx, smoke, CO, and HC. The results suggested that in-cylinder combustion in a compression ignition engine was warranted. Tests were conducted in a single cylinder, air-cooled, naturally aspirated, 3.5 horsepower Yanmar diesel engine. The compressibility of this new fuel composition necessitated a modified injector to provide smooth operation.
Technical Paper

Development, Validation and ECM Embedment of a Physics-Based SCR on Filter Model

2016-09-27
2016-01-8075
SCR on Filter (SCRoF) is an efficient and compact NOX and PM reduction technology already used in series production for light-duty applications. The technology is now finding its way into the medium duty and heavy duty market. One of the key challenges for successful application is the robustness to real world variations. The solution to this challenge can be found by using model-based control algorithms, utilizing state estimation by physics-based catalyst models. This paper focuses on the development, validation and real time implementation of a physics-based control oriented SCRoF model. An overview of the developed model will be presented, together with a brief description of the model parameter identification and validation process using engine test bench measurement data. The model parameters are identified following a streamlined approach, focusing on decoupling the effects of deNOx and soot phenomena.
Technical Paper

Effect of Reductive Regeneration Conditions on Reactivity and Stability of a Pd-Based Oxidation Catalyst for Lean-Burn Natural Gas Applications

2016-04-05
2016-01-1005
Regulations on methane emissions from lean-burn natural gas (NG) and lean-burn dual fuel (natural gas and diesel) engines are becoming more stringent due to methane’s strong greenhouse effect. Palladium-based oxidation catalysts are typically used for methane reduction due to their relative high reactivity under lean conditions. However, the catalytic activity of these catalysts is inhibited by the water vapor in exhaust and decreases over time from exposure to trace amounts of sulfur. The reduction of deactivated catalysts in a net rich environment is known to be able to regenerate the catalyst. In this work, a multicycle methane light-off & extinction test protocol was first developed to probe the catalyst reactivity and stability under simulated exhaust conditions. Then, the effect of two different regeneration gas compositions, denoted as regen-A and regen-B, was evaluated on a degreened catalyst and a catalyst previously tested on a natural gas engine.
Technical Paper

Lab Study of Urea Deposit Formation and Chemical Transformation Process of Diesel Aftertreatment System

2017-03-28
2017-01-0915
Diesel exhaust fluid, DEF, (32.5 wt.% urea aqueous solution) is widely used as the NH3 source for selective catalytic reduction (SCR) of NOx in diesel aftertreatment systems. The transformation of sprayed liquid phase DEF droplets to gas phase NH3 is a complex physical and chemical process. Briefly, it experiences water vaporization, urea thermolysis/decomposition and hydrolysis. Depending on the DEF doser, decomposition reaction tube (DRT) design and operating conditions, incomplete decomposition of injected urea could lead to solid urea deposit formation in the diesel aftertreatment system. The formed deposits could lead to engine back pressure increase and DeNOx performance deterioration etc. The formed urea deposits could be further transformed to chemically more stable substances upon exposure to hot exhaust gas, therefore it is critical to understand this transformation process.
X