Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Speciated Engine-Out Organic Gas Emissions from a PFI-SI Engine Operating on Ethanol/Gasoline Mixtures

2009-11-02
2009-01-2673
Engine-out HC emissions from a PFI spark ignition engine were measured using a gas chromatograph and a flame ionization detector (FID). Two port fuel injectors were used respectively for ethanol and gasoline so that the delivered fuel was comprised of 0, 25, 50, 75 and 100% (by volume) of ethanol. Tests were run at 1.5, 3.8 and 7.5 bar NIMEP and two speeds (1500 and 2500 rpm). The main species identified with pure gasoline were partial reaction products (e.g. methane and ethyne) and aromatics, whereas with ethanol/gasoline mixtures, substantial amounts of ethanol and acetaldehyde were detected. Indeed, using pure ethanol, 74% of total HC moles were oxygenates. In addition, the molar ratio of ethanol to acetaldehyde was determined to be 5.5 to 1. The amount (as mole fraction of total HC moles) of exhaust aromatics decreased linearly with increasing ethanol in the fuel, while oxygenate species correspondingly increased.
Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
Journal Article

Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control

2010-04-12
2010-01-0811
Ash, primarily derived from diesel engine lubricants, accumulates in diesel particulate filters directly affecting the filter's pressure drop sensitivity to soot accumulation, thus impacting regeneration frequency and fuel economy. After approximately 33,000 miles of equivalent on-road aging, ash comprises more than half of the material accumulated in a typical cordierite filter. Ash accumulation reduces the effective filtration area, resulting in higher local soot loads toward the front of the filter. At a typical ash cleaning interval of 150,000 miles, ash more than doubles the filter's pressure drop sensitivity to soot, in addition to raising the pressure drop level itself. In order to evaluate the effects of lubricant-derived ash on DPF pressure drop performance, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully-controlled exhaust conditions.
Journal Article

Study of On-Board Ammonia (NH3) Generation for SCR Operation

2010-04-12
2010-01-1071
Mechanisms of NH₃ generation using LNT-like catalysts have been studied in a bench reactor over a wide range of temperatures, flow rates, reformer catalyst types and synthetic exhaust-gas compositions. The experiments showed that the on board production of sufficient quantities of ammonia on board for SCR operation appeared feasible, and the results identified the range of conditions for the efficient generation of ammonia. In addition, the effects of reformer catalysts using the water-gas-shift reaction as an in-situ source of the required hydrogen for the reactions are also illustrated. Computations of the NH₃ and NOx kinetics have also been carried out and are presented. Design and impregnation of the SCR catalyst in proximity to the ammonia source is the next logical step. A heated synthetic-exhaust gas flow bench was used for the experiments under carefully controlled simulated exhaust compositions.
Journal Article

Characteristics and Effects of Lubricant Additive Chemistry on Ash Properties Impacting Diesel Particulate Filter Service Life

2010-04-12
2010-01-1213
Ash accumulation in diesel particulate filters, mostly from essential lubricant additives, decreases the filter's soot storage capacity, adversely affects fuel economy, and negatively impacts the filter's service life. While the adverse effects of ash accumulation on DPF performance are well known, the underlying mechanisms controlling these effects are not. To address these issues, results of detailed measurements with specially formulated lubricants, correlating ash properties to individual lubricant additives and their effects on DPF pressure drop, are presented. Investigations using the specially-formulated lubricants showed ash consisting primarily of calcium sulfates to exhibit significantly increased flow resistance as opposed to ash primarily composed of zinc phosphates. Furthermore, ash accumulated along the filer walls was found to be packed approximately 25% denser than ash accumulated in the channel end-plugs.
Journal Article

Engine Friction Accounting Guide and Development Tool for Passenger Car Diesel Engines

2013-10-14
2013-01-2651
The field of automotive engineering has devoted much research to reduce fuel consumption to attain sustainable energy usage. Friction reductions in powertrain components can improve engine fuel economy. Quantitative accounting of friction is complex because it is affected by many physical aspects such as oil viscosity, temperature, surface roughness and component rotation speed. The purpose of this paper is two-fold: first, to develop a useful tool for evaluating the friction in engine and accessories based on test data; second, to exercise the tool to evaluate the fuel economy gain in a drive cycle for several friction reduction technologies.
Journal Article

Validation and Design of Heavy Vehicle Cooling System with Waste Heat Recovery Condenser

2014-09-30
2014-01-2339
Fuel efficiency for tractor/trailer combinations continues to be a key area of focus for manufacturers and suppliers in the commercial vehicle industry. Improved fuel economy of vehicles in transit can be achieved through reductions in aerodynamic drag, tire rolling resistance, and driveline losses. Fuel economy can also be increased by improving the efficiency of the thermal to mechanical energy conversion of the engine. One specific approach to improving the thermal efficiency of the engine is to implement a waste heat recovery (WHR) system that captures engine exhaust heat and converts this heat into useful mechanical power through use of a power fluid turbine expander. Several heat exchangers are required for this Rankine-based WHR system to collect and reject the waste heat before and after the turbine expander. The WHR condenser, which is the heat rejection component of this system, can be an additional part of the front-end cooling module.
Technical Paper

Optimal Energy Management Strategy for Energy Efficiency Improvement and Pollutant Emissions Mitigation in a Range-Extender Electric Vehicle

2021-09-05
2021-24-0103
The definition of the energy management strategy for a hybrid electric vehicle is a key element to ensure maximum energy efficiency. The ability to optimally manage the on-board energy sources, i.e., fuel and electricity, greatly affects the final energy consumption of hybrid powertrains. In the case of plug-in series-hybrid architectures, such as Range-Extender Electric Vehicles (REEVs), fuel efficiency optimization alone can result in a stressful operation of the range-extender engine with an excessively high number of start/stops. Nonetheless, reducing the number of start/stops can lead to long periods in which the engine is off, resulting in the after-treatment system temperature to drop and higher emissions to be produced at the next engine start.
Technical Paper

A Numerical Model for Piston Pin Lubrication in Internal Combustion Engines

2020-09-15
2020-01-2228
As the piston pin works under significant mechanical load, it is susceptible to wear, seizure, and structural failure, especially in heavy duty internal combustion engines. It has been found that the friction loss associated with the pin is comparable to that of the piston, and can be reduced when the interface geometry is properly modified. However, the mechanism that leads to such friction reduction, as well as the approaches towards further improvement, remain unknown. This work develops a piston pin lubrication model capable of simulating the interaction between the pin, the piston, and the connecting rod. The model integrates dynamics, solid contact, oil transport, and lubrication theory, and applies an efficient numerical scheme with second order accuracy to solve the highly stiff equations. As a first approach, the current model assumes every component to be rigid.
Technical Paper

Engine Mounted Oil Cooler 3D CFD CHT Analysis for Predicting Thermal Performance

2021-09-22
2021-26-0351
This paper describes steady state, computationally rigorous, three-dimensional conjugate heat transfer 3D CFD analysis of an oil cooler. Thermal performance of an oil cooler is very significant from engine oil consumption, bearings performance etc. In an engine water jacket, coolant flows around and through the oil cooler making the flow three dimensional. Therefore, demanding the need of a 3D CFD analysis for capturing all the flow and heat transfer aspects and thereby accurate prediction of thermal performance. An oil cooler contains intricate turbulators in flow paths and have dimensions varying from as small as 0.25 mm to as large as 350 mm, therefore making the meshing and solution a formidable task. In current work an oil cooler with all the intricate details is modelled in a commercial CFD code. Objective is to develop a solution approach which can predict thermal performance of an oil cooler in an accurate way.
Journal Article

Lubricant-Derived Ash Impact on Gasoline Particulate Filter Performance

2016-04-05
2016-01-0942
The increasing use of gasoline direct injection (GDI) engines coupled with the implementation of new particulate matter (PM) and particle number (PN) emissions regulations requires new emissions control strategies. Gasoline particulate filters (GPFs) present one approach to reduce particle emissions. Although primarily composed of combustible material which may be removed through oxidation, particle also contains incombustible components or ash. Over the service life of the filter the accumulation of ash causes an increase in exhaust backpressure, and limits the useful life of the GPF. This study utilized an accelerated aging system to generate elevated ash levels by injecting lubricant oil with the gasoline fuel into a burner system. GPFs were aged to a series of levels representing filter life up to 150,000 miles (240,000 km). The impact of ash on the filter pressure drop and on its sensitivity to soot accumulation was investigated at specific ash levels.
Journal Article

Assessment of Gasoline Direct Injection Engine Cold Start Particulate Emission Sources

2017-03-28
2017-01-0795
The gasoline direct injection (GDI) engine particulate emission sources are assessed under cold start conditions: the fast idle and speed/load combinations representative of the 1st acceleration in the US FTP. The focus is on the accumulation mode particle number (PN) emission. The sources are non-fuel, combustion of the premixed charge, and liquid fuel film. The non-fuel emissions are measured by operating the engine with premixed methane/air or hydrogen/air. Then the PN level is substantially lower than what is obtained with normal GDI operation; thus non-fuel contribution to PN is small. When operating with stoichiometric premixed gasoline/air, the PN level is comparable to the non-fuel level; thus premixed-stoichiometric mixture combustion does not significantly generate particulates. For fuel rich premixed gasoline/air, PN increases dramatically when lambda is less than 0.7 to 0.8.
Journal Article

Analysis of Ash in Low Mileage, Rapid Aged, and High Mileage Gasoline Exhaust Particle Filters

2017-03-28
2017-01-0930
To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way catalyst washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging was low in quantity although similar in quality to real time ash. Filters were also examined after a low mileage break-in of approximately 3000 km.
Journal Article

A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet

2008-04-14
2008-01-0459
This paper quantifies the potential of electric propulsion systems to reduce petroleum use and greenhouse gas (GHG) emissions in the 2030 U.S. light-duty vehicle fleet. The propulsion systems under consideration include gasoline hybrid-electric vehicles (HEVs), plug-in hybrid vehicles (PHEVs), fuel-cell hybrid vehicles (FCVs), and battery-electric vehicles (BEVs). The performance and cost of key enabling technologies were extrapolated over a 25-30 year time horizon. These results were integrated with software simulations to model vehicle performance and tank-to-wheel energy consumption. Well-to-wheel energy and GHG emissions of future vehicle technologies were estimated by integrating the vehicle technology evaluation with assessments of different fuel pathways. The results show that, if vehicle size and performance remain constant at present-day levels, these electric propulsion systems can reduce or eliminate the transport sector's reliance on petroleum.
Journal Article

Particulate Matter Emissions from a Direct Injection Spark Ignition Engine under Cold Fast Idle Conditions for Ethanol-Gasoline Blends

2011-04-12
2011-01-1305
The engine out particular matter number (PN) distributions at engine coolant temperature (ECT) of 0° C to 40° C for ethanol/ gasoline blends (E0 to E85) have been measured for a direct-injection spark ignition engine under cold fast idle condition. For E10 to E85, PN increases modestly when the ECT is lowered. The distributions, however, are insensitive to the ethanol content of the fuel. The PN for E0 is substantially higher than the gasohol fuels at ECT below 20° C. The total PN values (obtained from integrating the PN distribution from 15 to 350 run) are approximately the same for all fuels (E0 to E85) when ECT is above 20° C. When ECT is decreased below 20° C, the total PN values for E10 to E85 increase modestly, and they are insensitive to the ethanol content. For E0, however, the total PN increases substantially. This sharp change in PN from E0 to E10 is confirmed by running the tests with E2.5 and E5. The midpoint of the transition occurs at approximately E5.
Journal Article

EGR Effects on Boosted SI Engine Operation and Knock Integral Correlation

2012-04-16
2012-01-0707
The effects of cooled exhaust gas recirculation (EGR) on a boosted direct-injection (DI) spark ignition (SI) engine operating at stoichiometric equivalence ratio, gross indicated mean effective pressure of 14-18 bar, and speed of 1500-2500 rpm, are studied under constant fuel condition at each operating point. In the presence of EGR, burn durations are longer and combustion is more retard. At the same combustion phasing, the indicated specific fuel consumption improves because of a decrease in heat loss and an increase in the specific heat ratio. The knock limited spark advance increases substantially with EGR. This increase is due partly to a slower combustion which is equivalent to a spark retard, as manifested by a retarded value of the 50% burn point (CA50), and due partly to a slower ignition chemistry of the diluted charge, as manifested by the knock limited spark advance to beyond the value offered by the retarded CA50.
Journal Article

Potential of Negative Valve Overlap for Part-Load Efficiency Improvement in Gasoline Engines

2018-04-03
2018-01-0377
This article reports on the potential of negative valve overlap (NVO) for improving the net indicated thermal efficiency (η NIMEP) of gasoline engines during part load. Three fixed fuel flow rates, resulting in indicated mean effective pressures of up to 6 bar, were investigated. At low load, NVO significantly reduces the pumping loses during the gas exchange loop, achieving up to 7% improvement in indicated efficiency compared to the baseline. Similar efficiency improvements are achieved by positive valve overlap (PVO), with the disadvantage of worse combustion stability from a higher residual gas fraction (xr). As the load increases, achieving the wide-open throttle limit, the benefits of NVO for reducing the pumping losses diminish, while the blowdown losses from early exhaust valve opening (EVO) increase.
Journal Article

Sensitivity Analysis of Ash Packing and Distribution in Diesel Particulate Filters to Transient Changes in Exhaust Conditions

2012-04-16
2012-01-1093
Current CJ-4 lubricant specifications place chemical limits on diesel engine oil formulations to minimize the accumulation of lubricant-derived ash in diesel particulate filters (DPF). While lubricant additive chemistry plays a strong role in determining the amount and type of ash accumulated in the DPF, a number of additional factors play important roles as well. Relative to soot particles, whose residence time in the DPF is short-lived, ash particles remain in the filter for a significant fraction of the filter's useful life. While it is well-known that the properties (packing density, porosity, permeability) of soot deposits are primarily controlled by the local exhaust conditions at the time of particle deposition in the DPF, the cumulative operating history of the filter plays a much stronger role in controlling the properties and distribution of the accumulated ash.
Journal Article

Evaluation of Fuel-Borne Sodium Effects on a DOC-DPF-SCR Heavy-Duty Engine Emission Control System: Simulation of Full-Useful Life

2016-10-17
2016-01-2322
For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement.
Journal Article

Ash Permeability Determination in the Diesel Particulate Filter from Ultra-High Resolution 3D X-Ray Imaging and Image-Based Direct Numerical Simulations

2017-03-28
2017-01-0927
Diesel engine exhaust aftertreatment components, especially the diesel particulate filter (DPF), are subject to various modes of degradation over their lifetimes. One particular adverse effect on the DPF is the significant rise in pressure drop due to the accumulation of engine lubricant-derived ash which coats the inlet channel walls effectively decreasing the permeability of the filter. The decreased permeability due to ash in the DPF can result in increased filter pressure drop and decreased fuel economy. A unique two-step approach, consisting of experimental measurements and direct numerical simulations using ultra-high resolution 3D imaging data, has been utilized in this study to better understand the effects of ash accumulation on engine aftertreatment component functionality.
X