Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Cetane Number Estimation of Diesel Fuels from Carbon Type Structural Composition

1984-10-01
841341
The present day measure of the ignition quality of a diesel fuel is the cetane number. Cetane number determination is carried out using a special single cylinder engine with reproducible operating conditions and variable compression ratio. The importance of the carbon skeletal structure of the fuel on the ignition quality is qualitatively well known, but the practice of defining the ignition quality of diesel fuels by a term, whose physical and/or chemical meaning is not well understood, has not been abandoned yet. The correlations that have been proposed recently, which relate the total fuel aromaticity or mid-boiling point, hydrogen content and density to the cetane number, suffer from the lack of representation of the fuel's compositional structure, and of well defined relationship, if any, between boiling point, hydrogen content, density and ignition quality.
Technical Paper

High Speed Diesel Performance/Combustion Characteristics Correlated with Structural Composition of Tar Sands Derived Experimental Fuels

1985-02-01
850240
Two Canadian tar sands derived experimental diesel fuels with cetane numbers of 26 and 36 and a reference fuel with a cetane number of 47 were tested in a Deutz (F1L511D), single cylinder, A stroke, naturally aspirated research engine. The fuels were tested at intake and cooling air temperatures of 30 and 0°C. The 36 cetane number fuel was tested with advanced, rated and retarded injection timings. Poor engine speed stability at light loads and excessive rates of combustion pressure rise were experienced with the lowest cetane number fuel. Detailed performance/combustion behavior is presented and a correlation with fuel structural composition is made. The analytical techniques used to characterize the fuels included liquid chromatography, gas chromatography mass spectrometry (GC-MS) and proton nuclear magnetic resonance spectrometry (PNMR).
X