Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Balancing Design Functional Coupling and Sensitivity to Noise to Achieve the Design Target

2007-04-16
2007-01-1207
The primary objective in design is to achieve the target value of the design's response function. If a design fails to achieve the target value, it most likely fails in two ways: inconsistent functional output and in design involving multiple response functions, unable to converge to the multiple target values in spite of iterative adjustment of the design parameters. The former is symptom of a design not able to perform in the presence of variability, i.e., noise. The latter is symptom of a design that fails to perform in the presence of functional coupling. Both problems are best addressed at the conceptual stage of the design at which only design solution that is inherently robust to noise and functionally uncoupled is entertained. If this is not possible, the alternative is to exploit the interaction between control variables and variables that are sources of noise and functional coupling to render the design insensitive to them.
Technical Paper

Microstructure and Mechanical Properties of Welded Thermoplastics

2004-03-08
2004-01-0732
Thermoplastics have been used increasingly for automobile components for both interior and under-the-hood applications. The plastic parts are made through various molding process such as compression molding, injection molding and blow molding. For parts with large or complicated geometry, small portions of the part may have to be molded first, then joined together using a welding process. The welded regions usually exhibit inhomogeneous and inferior mechanical performance compared to the bulk regions due to the differences in thermal history. The microstructures and mechanical properties of welded thermoplastics have been examined using hot-plate welded polyethylene. The specimens are prepared at various thermal conditions to simulate the real welding process. The thermal properties in welds are monitored using DSC (Differential Scanning Calorimetry) and the crystallinities are calculated.
Technical Paper

On the Use of Spatial Transmissibility to Evaluate the NVH Performance of Engine Cover Assembly

2002-03-04
2002-01-0458
In the present study, the NVH performance of an engine valve cover assembly is analyzed by the use of “spatial transmissibility (TR)”. It is a measure of the spatial response of the cover relative to the spatial response of the underlying structure to which it is connected. A prototyped engine valve cover assembly is examined. The cover transmissibility is computed through the finite element method and also measured by experimental testing. Various isolation systems have been examined and different cover materials have been investigated, including magnesium and thermosetting plastic. The transmissibility provides a strategy for evaluating the NVH characteristic of engine cover assembly in a much more timely, cost-effective manner, while the product is still in the early conceptual stage.
Technical Paper

Acoustic Analysis of Isolated Engine Valve Covers

2003-05-05
2003-01-1674
The powertrain engine is a major source of vibration and noise in automotive vehicles. Among the powertrain components, the valve cover has been identified as one of the main noise contributors due to its large radiating surface and thin shell-like structure. There has been an increasing demand for rapid assessment of the valve cover noise level in the early product design stages. The present study analyzes the radiated sound pressure level (SPL) of a valve cover assembly using the finite element method (FEM). The analysis is first performed using a fully coupled structural-acoustic approach. In this case the solid structure is directly coupled to the enclosed and surrounding air in a single analysis, and the structural and acoustic fields are solved simultaneously. In the next approach, the analysis is performed in a sequential manner, using a submodeling technique. First, the structural vibration of the cover is analyzed in the absence of the surrounding air.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

Sound Radiation of Engine Covers With Acoustic Infinite Element Method

2005-05-16
2005-01-2449
The engine valve cover is known to be major contributor to powertrain noise due to its large surface area and relatively small thickness. Thus, the acoustic analysis of the valve cover has become one of the key steps in the design process. The present paper describes an acoustic infinite element approach to model the sound radiation of the valve cover. The valve cover bolted to the engine block behaves like a vibrating membrane in an acoustic medium of infinite extent. Typically, the effect of the infinite medium is modeled using either the boundary element method (BEM), or by specifying an equivalent boundary impedance on the terminating surface of an acoustic finite element mesh (NRBC). In this paper, a third method is introduced, wherein the boundary impedances are replaced by acoustic infinite elements. The methodology is presented using two different models. In the first model, a cover with a geometrically simple shape is analyzed.
Technical Paper

Spatial Transmissibility of Plastic Cylinder-Head Covers

2005-04-11
2005-01-1515
The transmissibility technique has been traditionally used for evaluating the NVH performance of isolated, rigid structures such as the elastomer mount isolated automobile engine. The transmissibility quantity provides information on how a structure reduces vibration as subjected to dynamic loading and thereby attenuates noise. In the present study, the transmissibility is applied to a non-rigid, plastic structure - the engine cylinder-head cover module. The cover module includes primarily a thin, plate-like cover and the elastomer isolation system. At low frequencies, the cover will behave as a rigid mass and thus display a major peak at its resonant frequency. At high frequencies, the cover will vibrate as a flexible panel and thus display multiple peaks with magnitudes differing from point to point across the cover surface. As a result, the transmissibility calculated would have a spatial resolution, called the spatial transmissibility.
Technical Paper

Vibration Measurement in Flight

1937-01-01
370175
EQUIPMENT for measuring vibration in airplane structures and powerplants during actual flight is described in this paper. This development is the result of a cooperative research program carried out by the Bureau of Aeronautics of the U. S. Navy and the Massachusetts Institute of Technology with contributions of improvements in design and new features by the Sperry Gyroscope Co., Inc. In its essentials, the M.I.T.-Sperry Apparatus consists of a number of electrical pickup units which operate a central amplifying and recording unit. The recorder is a double-element photographic oscillograph. Each pickup is adapted especially to the type of vibration that it is intended to measure and is made so small that it does not appreciably affect the vibration characteristics of the member to which it is attached rigidly. By using a number of systematically placed pickups, all the necessary vibration information on an airplane can be recorded during a few short flights.
Technical Paper

REAR AXLES Today Tomorrow

1958-01-01
580038
ON THE basis of laboratory and field tests of passenger-car and light-truck rear axles, the authors conclude: 1. The capacity of present axles can be increased, without increasing axle size, when greater load-carrying antiwear and antiscore lubricants are available. 2. Gear noise will always be a major problem because axle gears are operating at varying speeds and loads whenever a car is in motion. Many gear noise problems can be overcome by proper tooth development and by testing in the actual car model under which the axle will be used. 3. The only reliable basis for torque-capacity rating is the tractive effort (wheel-slip torque). 4. The limited-slip type of differential will eventually become standard equipment on all passenger cars, if only to improve car handling and stability during high-speed driving under varying traction conditions.
Technical Paper

Torsionally Resilient Drive Lines

1960-01-01
600019
THE INCREASED use of midship-mounted transmissions in large equipment has emphasized the need for a torsionally resilient connection from the engine to reduce vibration transfer. To increase the torsional flexibility needed in these systems, the spring rate of the system must be reduced by such constructions as a flexible coupling, a spring-loaded damper, or a rubber torsional spring. This paper discusses these systems, emphasizing rubber springs. Some advantages of such a drive are: it provides an amplitude limitation with impact loads and a cushion to reduce noise and prevent clattering and contacts noises on parts with backlash, it smooths out transition periods to reduce loads on bearings and gears, its clamping characteristics can be adjusted by various rubbers, and its rubber cushion provides a degree axial flexibility.*
Technical Paper

Determining Magnitudes of Axle Gear Noise

1963-01-01
630166
A simple and basic laboratory test is described which may be used to evaluate and compare axle noises in a passenger car. In this method, a number is assigned to the magnitude of a given noise at any given frequency through a complete range of speed and load conditions during typical vehicle operation. A chassis dynamometer is used to simulate road conditions, and various pickup and recording instrumentation are employed to record the objectionable noises under different operating conditions and speeds.
X