Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Clutch Engagement Simulation: Engagement Without Throttle

1992-02-01
920766
The present research constitutes an engineering approach to the performance level prediction of starting a vehicle without use of a throttle. The study is based on a dynamic clutch engagement model. A computer simulation of engagement dynamics is used in order to study the lock-up mechanism and to develop proper prediction procedures. In addition, the engagement model is used to develop guidelines and recommendations in order to optimize the engagement system including clutch components, clutch controls, and engine controls. The mathematical model presented in this paper incorporates important, new features in comparison to similar models from previous publications. Consisting of two inertias, it includes not only elastic properties of the clutch damper but also varying engine torque and clamping (pressure) force. Functions of engine torque and plate load simulate the actual control process, including human factors.
Technical Paper

Clutch Engagement Simulation: Engagement with Throttle

1992-11-01
922483
The present paper is a continuation of engineering efforts devoted mathematical modeling and computer simulation presented in [1]. The modeling and study is extended on starting a vehicle with use of a throttle. The basic mathematical model utilized in [1] has had to be modified because clutch engagement with throttle make investigators consider new human factors contributing strongly to starting conditions. In particular, not only the clutch release but also the accelerator pedal are controlled by a vehicle operator. This has made the authors modify the definition of an ideal engagement and incorporate both the throttle level and the throttle lead time to the mathematical model. Moreover, the model has been adjusted to consolidate dissimilar low range characteristics for diesel and gas engines.
Technical Paper

Engineering Method for Rating Shift Quality

1993-11-01
932996
It is common for difficult shifting to occur in synchronized transmissions. High shift effort is recognized as a basic performance malfunction that takes place during synchronization. This paper examines shift quality in vehicles with synchronized transmissions. The present study is working on three categories: a mathematical model and computer simulation of transmission shifts, an experimental verification of the model and program, and an engineering method for rating shift quality. The mathematical model in this study is a refinement of a model from an earlier paper [1]. With experience, this model has seen revisions that allow the results to be more accurate than the previous ones. The model takes into considerations many elements that affect the synchronizing process such as: synchronizing torque, inertia of both clutch disc(s) and transmission components, clutch drag, viscous drag in the transmission, shifting RPM's, etc.
Technical Paper

Analysis of an Automotive Driveline with Cardan Universal Joints

1995-02-01
950895
A detailed methodology is presented in this paper for a complete assessment of various forces, torques, and kinematic effects due to universal joint angularities and shaft yoke phasing. A modular approach has been adopted wherein constitutive equations represent each of the key elements of a driveline namely the driveshaft, coupling shaft, universal joint, and the transmission/axle shafts. Concentrated loads are used wherever loads are being transferred between the elements of a driveline. Local matrices are developed for the equilibrium of the respective driveline members. The local matrices are then assembled into a global matrix and solved for the kinematic state of the complete driveline. A 6x15 matrix has been developed to represent a general shaft in the system and a 6x10 matrix has been developed for a universal joint cross. This gives us a complete picture of all the loads on all driveline members.
Technical Paper

Hysteresis Effects on Driveline Torsional Vibrations

1995-05-01
951293
A major challenge in predicting driveline torsionals is the modeling of major energy dissipation mechanisms in the driveline. Primary candidates for such mechanisms are viscous dampers and dry friction (hysteresis) dampers which are specifically included by the designers to disperse the energy of torsional vibrations. The inherent structural and other internal damping in the components of the driveline is small as compared to those of viscous and dry friction dampers. Past attempts to model clutch hysteresis have repeatedly resorted to the classical approach of modeling that has been reported many years ago. However, such an approach is oversimplified and assumes, for instance, that the hysteretic effects are independent of the frequency. In addition, the motion of the damper is assumed to be purely harmonic. Also, such studies rely solely upon the static hysteresis characterization of the elements, particularly within the clutch.
X