Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Mars Gravity Biosatellite: Thermal Design Strategies for a Rotating Partial Gravity Spacecraft

2007-07-09
2007-01-3078
A rotating spacecraft which encloses an atmospheric pressure vessel poses unique challenges for thermal control. In any given location, the artificial gravity vector is directed from the center to the periphery of the vehicle. Its local magnitude is determined by the mathematics of centripetal acceleration and is directly proportional to the radius at which the measurement is taken. Accordingly, we have a system with cylindrical symmetry, featuring microgravity at its core and increasingly strong gravity toward the periphery. The tendency for heat to move by convection toward the center of the craft is one consequence which must be addressed. In addition, fluid flow and thermal transfer is markedly different in this unique environment. Our strategy for thermal control represents a novel approach to address these constraints. We present data to theoretically and experimentally justify design decisions behind the Mars Gravity Biosatellite's proposed payload thermal control subassembly.
Technical Paper

Handheld Fine Water Mist Extinguisher for Spacecraft

2008-06-29
2008-01-2040
Fine water mist has become a commercial technology for fire suppression in multiple applications. With funding from NASA, ADA Technologies, Inc. (ADA) is developing a handheld fine water mist fire extinguisher for use on manned spacecraft and in future planetary habitats. This design employs only water and nitrogen as suppression agents to allow local refill and reuse. The prototype design incorporates features to generate a uniform fine water mist regardless of the direction of the gravitational vector or lack of gravity altogether. The system has been proven to extinguish open fires and hidden fire scenarios in tests conducted at the Colorado School of Mines (CSM). This design can be deployed as a portable extinguisher or as an automated system for local fire protection in instrument racks or storage spaces. Continued development will result in prototype hardware suitable for use on future manned spacecraft.
Technical Paper

Advances in Development of a Fine Water Mist Portable Fire Extinguisher

2009-07-12
2009-01-2510
ADA Technologies, Inc. has designed and built a microgravity-tolerant portable fire extinguisher prototype for use in manned spacecraft and planetary habitats. This device employs Fine Water Mist (FWM) as the fire extinguishing agent, and is refillable from standard stores on long-duration missions. The design uses a single storage tank for minimal mass and volume. The prototype employs a dual-fluid atomizer concept where the pressurant gas (nitrogen) also enhances the water atomization process to generate a droplet size distribution in the optimum diameter range of 10 to 50 micrometers. The expanding discharge gas plume carries the mist to the immediate vicinity of the fire where its extensive surface area promotes high heat transfer rates. A series of 80 fire suppression tests was recently completed to evaluate design options for the hardware and validate performance on three representative fire scenarios.
Technical Paper

Interplanetary Rapid Transit to Mars

2003-07-07
2003-01-2392
A revolutionary interplanetary rapid transit concept for transporting scientists and explorers between Earth and Mars is presented by Global Aerospace Corporation under funding from the NASA Institute for Advanced Concepts (NIAC) with support from the Colorado School of Mines, and Science Applications International Corporation. We describe an architecture that uses highly autonomous spaceships, dubbed Astrotels; small Taxis for trips between Astrotels and planetary Spaceports; Shuttles that transport crews to and from orbital space stations and planetary surfaces; and low-thrust cargo freighters. In addition we discuss the production of rocket fuels using extraterrestrial materials; aerocapture to slow Taxis at the planets; and finally describe a number of trade studies and their life-cycle cost results.
Technical Paper

Space Life Support from the Cellular Perspective

2001-07-09
2001-01-2229
Determining the fundamental role of gravity in vital biological systems in space is one of six science and research areas that provides the philosophical underpinning for why NASA exists. The study of cells, tissues, and microorganisms in a spaceflight environment holds the promise of answering multiple intriguing questions about how gravity affects living systems. To enable these studies, specimens must be maintained in an environment similar to that used in a laboratory. Cell culture studies under normal laboratory conditions involve maintaining a highly specialized environment with the necessary temperature, humidity control, nutrient, and gas exchange conditions. These same cell life support conditions must be provided by the International Space Station (ISS) Cell Culture Unit (CCU) in the unique environment of space. The CCU is a perfusion-based system that must function in microgravity, at unit gravity (1g) on earth, and from 0.1g up to 2g aboard the ISS centrifuge rotor.
Technical Paper

Mission Planning and Re-planning for Planetary Extravehicular Activities: Analysis of Excursions in a Mars-Analog Environment and Apollo Program

2006-07-17
2006-01-2297
Future planetary extravehicular activities (EVAs) will go beyond what was experienced during Apollo. As mission duration becomes longer, inevitably, the astronauts on the surface of the Moon and Mars will actively plan and re-plan their own sorties. To design robust decision support aids for these activities, we have to first characterize all the different types of excursions that are possible. This paper describes a framework that organizes parameters and constraints that define a single planetary EVA. We arrived at this framework through case studies: by reviewing the EVA lessons learned during Apollo, conducting an observational study of excursions in a Mars-analog environment, and applying part of the framework to a prototype path planner for human planetary exploration.
Technical Paper

Recommendations for Real-Time Decision Support Systems for Lunar and Planetary EVAs

2007-07-09
2007-01-3089
Future human space exploration includes returning to the Moon and continuing to Mars. Essential to these missions is each planetary extravehicular activity, or EVA, where astronauts and robotic agents will explore lunar and planetary surfaces. Real-time decision support systems will help these explorers in efficiently planning and re-planning under time pressure sorties. Information and functional requirements for such a system are recommended and are based on on-going human-computer collaboration research.
X