Refine Your Search

Topic

Search Results

Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Technical Paper

Base Oil Effects on Friction Reducing Capabilities of Molybdenum Dialkyldithiocarbamate Containing Engine Oils

1997-10-01
972860
Engine oils formulated using molybdenum dialkyldithiocarbamate, Mo(dtc)2, additives can provide substantial friction reduction under mixed to boundary lubrication conditions. It has been previously shown that the effectiveness of Mo(dtc)2 is significantly affected by the presence of other additives and by additive interaction and depletion processes occurring during use. In this study, ligand exchange reactions in an additive system containing Mo(dtc)2 and zinc dialkyldithiophosphate, Zn(dtp)2, have been investigated during oxidation in hexadecane and various base oils at 160°C. Samples of different composition obtained from these studies were used in investigations of the effects of original additives and ligand exchange products on friction reducing capability at 45 and 105°C.
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2007-04-16
2007-01-0417
Since 2000, an Aluminum Cosmetic Corrosion task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has existed. The task group has pursued the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. A cooperative program uniting OEM, supplier, and consultants has been created and has been supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Prior to this committee's formation, numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels. However, correlations between these laboratory test results and in-service performance have not been established. Thus, the primary objective of this task group's project was to identify an accelerated laboratory test method that correlates well with in-service performance.
Technical Paper

Examination of the Corrosion Behavior of Creep-Resistant Magnesium Alloys in an Aqueous Environment

2007-04-16
2007-01-1023
An electrochemical testing protocol for assessing the intrinsic corrosion-resistance of creep-resistant magnesium alloys in aqueous environments, and effects of passivating surface films anticipated to develop in the presence of engine coolants is under development. This work reports progress in assessing the relative corrosion resistance of the base metals (AMC-SC1, MRI-202S, MRI-230D, AM50 and 99.98% Mg) in a common test environment, based on a near-neutral pH buffered saline solution, found to yield particularly stable values for the open-circuit or corrosion potential. This approach was found to provide a platform for the eventual assessment of the durability of certain passivating layers expected to develop during exposure of the magnesium alloys to aqueous coolants.
Technical Paper

Deactivation of Cu/Zeolite SCR Catalyst under Lean-Rich Aging Conditions

2010-04-12
2010-01-1180
A lean-rich hydrothermal aging was used to study the deactivation of Cu-zeolite SCR catalyst that has enhanced stability. Impact of DOC upstream on the SCR catalyst during the lean-rich aging was also investigated. The LR hydrothermal aging was conducted with the presence of hydrocarbon, CO and H₂ at different O₂ levels. It was found that the SCR catalyst was active for the oxidation of CO, H₂ and hydrocarbon, resulting in significant exotherm across the catalyst. In addition to hydrothermal aging, reductive aging, especially the presence of H₂ in the aging gas stream without O₂ presence during the L-R aging, might also contribute to the Cu/zeolite SCR catalyst deactivation. The impacts of DOC upstream on Cu/zeolite SCR catalysts depended on the aging temperatures. At lower aging temperature, the uncompleted oxidation of hydrocarbon and CO on the DOC might cause steam reforming and water-gas shift reactions on the DOC to form reductive gas stream.
Technical Paper

A Vehicle Micro Corrosion Environmental Study of Field and Proving Ground Tests

2001-03-05
2001-01-0646
This paper presents the progress of an ongoing vehicle micro corrosion environment study. The goal of the study is to develop an improved method for estimating vehicle corrosion based on the Total Vehicle Accelerated Corrosion Test at the Arizona Proving Ground (APG). Although the APG test greatly accelerates vehicle corrosion compared to the field, the “acceleration factor” varies considerably from site-to-site around the vehicle. This method accounts for the difference in corrosivity of various local corrosion environments from site-to-site at APG and in the field. Correlations of vehicle microenvironments with the macroenvironment (weather) and the occurrence of various environmental conditions at microenvironments are essential to the study. A comparison of results from APG versus field measurements generated using a cold rolled steel based corrosion sensor is presented.
Technical Paper

Products and Intermediates in Plasma-Catalyst Treatment of Simulated Diesel Exhaust

2001-09-24
2001-01-3512
A simulated diesel exhaust is treated with a nonthermal plasma discharge under steady state conditions. The plasma effluent is then passed through a sodium zeolite-Y (NaY) catalyst followed by a platinum oxidation catalyst. Detailed FTIR measurements of gas composition are taken before, between, and after the treatment stages. The plasma discharge causes oxidation of NO primarily to NO2, with methyl nitrate and nitric acid byproducts. At the same time, HC is partially oxidized, creating species such as formaldehyde, acetaldehyde, CO and other partial oxidation products. When this mixture passes over the NaY catalyst, part of the NOx is reduced to N2, with the remainder primarily in the form of NO. Methyl nitrate decomposes to form methanol and NOx, and nitric acid is consumed. There is little HC conversion on this catalyst. Small quantities of HCN and N2O are formed. When the mixture then passes over the platinum catalyst, further NOx conversion occurs.
Technical Paper

Laboratory Assessment of the Oxidation and Wear Performance Capabilities of Low Phosphorus Engine Oils

2001-09-24
2001-01-3541
Meeting upcoming stringent emission standards will require that exhaust gas catalyst systems become active very quickly, function at very high efficiencies and maintain those capabilities at high mileages. This means that contamination of the catalysts by engine oil derived poisons must be minimized. Phosphorus compounds, derived from the zinc dialkyldithio-phosphate (ZDTP) additives that provide antiwear and antioxidant activity, are a principal contaminant that can increase catalyst light off times and reduce catalyst efficiency. Therefore, reducing the concentration of, or eliminating, phosphorus in engine oils is desirable. Doing so, however, requires that oils be reformulated to ensure that wear protection will not be compromised and that oxidation stability will be maintained. To address these concerns, laboratory tests for evaluating oil oxidation and wear performance have been developed and used to evaluate developmental low phosphorus oils.
Technical Paper

Innovative Robust Solutions for Lean Manufacturing in Automotive Assembly Processes

2011-04-12
2011-01-1254
The article presents an innovative approach to the implementation of a robust design optimization solution in an automobiles assembly process. The approach of the entire project is specific to the 6 Sigma optimization process, by applying the DMAIC cycle integrated in a robust engineering approach for rendering lean the final product assembly process. According to the improvement cycle, the aspects specific for such a process are presented sequentially starting with the “Define” phase for presenting the encountered problem and continuing with the presentation of the scope of the project and its objectives. The “Improvement” cycle phase is applied by the analysis of the monitored 6 Sigma metrics (defined during the previous “Measure” phase and the cause and effect analysis, done during a brainstorming meeting developed during the “Analyze” phase). There follows a proposal for the innovative robust solution by which the assembly process is optimized.
Technical Paper

Restoring and Upgrading of a Ford Motor Company Reverberation Room Test Suite

2013-05-13
2013-01-1960
This paper presents the upgrades and improvements needed to bring an old and seldom used reverberation room test suite up to current standards. The upgrades and improvements included eliminating a below-floor pit that was open to the reverberation room, improving the acoustical diffusion within the room, enlarging the opening between the reverberation room and an adjacent anechoic chamber, renovating the anechoic receiving chamber, constructing an innovative sound transmission loss test fixture, and installing of a high power reverberation room sound system.
Technical Paper

Perforation Corrosion Evaluation of Precoated Steels by Ford APG Cyclic Test

1993-10-01
932364
Proving Ground cyclic testing was used to evaluate vehicles assembled with electrogalvanized and organic composite coated electrogalvanized steel. These same materials, along with several commonly available precoated steels, were also evaluated as hem flange assemblies on towed trailers at the Proving Ground. Testing was terminated as perforation of some of the assemblies occurred. Pitting depth was used to quantitatively evaluate metal loss.
Technical Paper

Wear Protection Properties of Flexible Fuel Vehicle (FFV) Lubricants

1993-10-01
932791
A laboratory wear test is used to evaluate the wear protection properties of new and used engine oils formulated for FFV service. Laboratory-blended mixtures of these oils with methanol and water have also been tested. The test consists of a steel ball rotating against three polished cast iron discs. Oil samples are obtained at periodic intervals from a fleet of 3.0L Taurus vehicles operating under controlled go-stop conditions. To account for the effects of fuel dilution, some oils are tested before and after a stripping procedure to eliminate gasoline, methanol and other volatile components. In addition to TAN and TBN measurements, a capillary electrophoresis technique is used to evaluate the formate content in the oils. The results suggest that wear properties of used FFV lubricants change significantly with their degree of usage.
Technical Paper

An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines

1993-10-01
932708
This paper provides an overview of spark-ignition engine unburned hydrocarbon emissions mechanisms, and then uses this framework to relate measured engine-out hydrocarbon emission levels to the processes within the engine from which they result. Typically, spark-ignition engine-out HC levels are 1.5 to 2 percent of the gasoline fuel flow into the engine; about half this amount is unburned fuel and half is partially reacted fuel components. The different mechanisms by which hydrocarbons in the gasoline escape burning during the normal engine combustion process are described and approximately quantified. The in-cylinder oxidation of these HC during the expansion and exhaust processes, the fraction which exit the cylinder, and the fraction oxidized in the exhaust port and manifold are also estimated.
Technical Paper

Organizing the Engineer's Toolbox

1993-03-01
930836
QFD, FMEA, Process Improvement, Taguchi, Simultaneous Engineering, PDP, Project Management, DVP, DOE, …and the list goes on. Today's automotive product design engineers face a myriad of “tools” (methodologies, techniques, procedures) that are expected to be mastered and used in the course of performing their job. The list continually grows with new tools being added to the existing ones. And each new tool has an associated acronym to add to the confusion. New and inexperienced engineers are often confused by these tools being tossed at them …school did not cover all this ! The experienced engineer is often skeptical. After all, “if I have been a successful engineer for 20 years, why do I need to start doing these things now?” Nevertheless, most of these tools are truly needed by engineers today in order to be competitive in the increasingly complex and sophisticated world of automotive product design.
Technical Paper

Chemical Kinetic Modeling of the Oxidation of Unburned Hydrocarbons

1992-10-01
922235
The chemistry of unburned hydrocarbon oxidation in SI engine exhaust was modeled as a function of temperature and concentration of unburned gas for lean and rich mixtures. Detailed chemical kinetic mechanisms were used to model isothermal reactions of unburned fuel/air mixture in an environment of burned gases at atmospheric pressure. Simulations were performed using five pure fuels (methane, ethane, propane, n-butane and toluene) for which chemical kinetic mechanisms and steady state hydrocarbon (HC) emissions data were available. A correlation is seen between reaction rates and HC emissions for different fuels. Calculated relative amounts of intermediate oxidation products are shown to be consistent with experimental measurements.
Technical Paper

Improvements in Heater, Defroster and Emissions Performances Using a Latent Heat Storage Device

1994-02-01
940089
Here we present a latent heat storage device which is used to provide “quick/supplemental” heat to the vehicle's conventional heating system. First, we present data from actual in-vehicle cold weather tests. Data are presented for heater and defroster performance tests, emissions tests and cold start tests after extended soaks. Secondly, heater performance predictions are made using a computer simulation program. Finally, the actual heater performance results are compared with the computer simulation.
Technical Paper

Gasoline Burner for Rapid Catalyst Light-off

1994-10-01
942072
This paper describes a study which was carried out to assess the potential for using a gasoline burner to heat the catalytic convertor during cold start. The results showed the catalyst/burner concept to be a promising LEV/ULEV capable technology. On a 1993 Ford Grand Marquis equipped with a catalyst burner system, catalyst light-off was achieved in less than 15 seconds while cold start HC emissions during the first 60 seconds of the FTP test were reduced by 60%. In addition, data are presented which compare the performance of the catalyst/burner to an electrically heated catalyst. In the tests performed, the catalyst/burner system out performed the EHC. Practical considerations, however, such as safety, durability, system integration, and packaging still need to be addressed.
X