Refine Your Search

Topic

Author

Search Results

Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

The Service Module Thermal Tests of the ESA Herschel and Planck Satellites

2007-07-09
2007-01-3167
European Space Agency (ESA) has planned two important missions for performing astronomical investigations in the infrared and sub-millimetre wavelength range: ♦Herschel satellite has an observatory type mission and is the fourth cornerstone mission (CS4) of the “Horizon 2000” programme. It will carry three instruments (HIFI, SPIRE, and PACS) for high and medium resolution spectroscopy, imaging and photometry over the sub-millimetre and far-infrared range. A 3.5 m telescope will focus the incoming radiation on the Focal Plane Units of these instruments. ♦Planck satellite has a survey type mission and is the third Medium mission (M3) of the “Horizon 2000” programme. It will provide a definitive high-angular resolution map of the cosmic microwave background anisotropies over at least 95% of the sky and over a wide frequency range. A 1.5 m telescope will focus the incoming radiation on the focal plane shared by the two instruments (LFI and HFI).
Technical Paper

Modeling and Correlation of an Actively-Controlled Single Phase Mechanically-Pumped Fluid Loop

2007-07-09
2007-01-3122
This paper describes the transient simulation of a single-phase mechanically pumped fluid loop (MPFL) thermal control system, developed in the frame of the European Space Agency ARTES 8 (Advanced Research in Telecommunication Systems - Large Platform Program) program. MPFL is intended to cool a part of the payload on a high power telecommunication satellite. A transient simulation has been implemented using ESATAN/FHTS; hence the results have been correlated with the test results, obtained from full scale MPFL testing, using real on-orbit profiles. The most considerable parts of the activities described herein are simulation of the thermal control law, verification of control parameters during thermo-hydraulic testing and the subsequent correlation.
Technical Paper

The Mars Gravity Biosatellite: Thermal Design Strategies for a Rotating Partial Gravity Spacecraft

2007-07-09
2007-01-3078
A rotating spacecraft which encloses an atmospheric pressure vessel poses unique challenges for thermal control. In any given location, the artificial gravity vector is directed from the center to the periphery of the vehicle. Its local magnitude is determined by the mathematics of centripetal acceleration and is directly proportional to the radius at which the measurement is taken. Accordingly, we have a system with cylindrical symmetry, featuring microgravity at its core and increasingly strong gravity toward the periphery. The tendency for heat to move by convection toward the center of the craft is one consequence which must be addressed. In addition, fluid flow and thermal transfer is markedly different in this unique environment. Our strategy for thermal control represents a novel approach to address these constraints. We present data to theoretically and experimentally justify design decisions behind the Mars Gravity Biosatellite's proposed payload thermal control subassembly.
Technical Paper

Polar Platform Service Module Thermal Balance Testing and Correlation

1997-07-01
972315
The first use of the Polar Platform (PPF) is for the Envisat/PPF mission. The Envisat/PPF spacecraft has a launch mass of 8.5 tons and external dimensions of 10.0 metres x 2.8 metres x 2.1 metres. Due to it's large size it was necessary to perform the thermal balance and thermal vacuum testing in two modules. The first test was for the Service Module (SM) and the second for the Payload Module (PLM). This paper discusses the thermal balance testing and subsequent correlation of the Polar Platform Service Module thermal mathematical model.
Technical Paper

Thermal Stability Analysis in the Frequency Domain using the ESATAN Thermal Suite

2008-06-29
2008-01-2078
An increasing number of spacecraft missions have very stringent requirements for thermal stability to avoid thermally driven noise from affecting the main observables. For example, it may be necessary to reduce temperature fluctuations in the neighbourhood of the instrument below micro-Kelvin (μK). Consequently, the influence of fluctuations in boundary temperature or internal power dissipation on temperature at the instrument detector must be precisely evaluated. Thermal stability requirements are usually expressed as an upper limit on the linear spectrum density (LSD) of temperature fluctuations. This indicates the strength of the response to a perturbation of a given frequency, and is usually stated in units of K/√Hz. The LSD can be estimated by running a succession of transient simulations and applying Fast Fourier Transforms techniques, but this method is time-consuming and has numerical limitations.
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2009-07-12
2009-01-2506
The Closed-Loop Air REvitalisation System ARES is a regenerative life support system for closed habitats. With regenerative processes the ARES covers the life support functions: 1. Removal of carbon dioxide from the spacecraft atmosphere via a regenerative adsorption/desorption process, 2. Supply of breathable oxygen via electrolysis of water, 3. Catalytic conversion of carbon dioxide with hydrogen to water and methane. ARES will be accommodated in a double ISPR Rack which will contain all main and support functions like power and data handling and process water management. It is foreseen to be installed onboard the International Space Station (ISS) in the Columbus Module in 2013. After an initial technology demonstration phase ARES shall continue to operate thus enhancing the capabilities of the ISS Life Support System as acknowledged by NASA [5]. Due to its regenerative processes ARES will allow a significant reduction of water upload to the ISS.
Technical Paper

Characterization of Structural, Volume and Pressure Components to Space Suit Joint Rigidity

2009-07-12
2009-01-2535
Gas-pressurized space suits are highly resistive to astronaut movement, and this resistance has been previously explained by volume and/or structural effects. This study proposed that an additional effect, pressure effects due to compressing/expanding the internal gas during joint articulation, also inhibits mobility. EMU elbow torque components were quantified through hypobaric testing. Structural effects dominated at low joint angles, and volume effects were found to be the primary torque component at higher angles. Pressure effects were found to be significant only at high joint angles (increased flexion), contributing up to 8.8% of the total torque. These effects are predicted to increase for larger, multi-axis joints. An active regulator system was developed to mitigate pressure effects, and was found to be capable of mitigating repeated pressure spikes caused by volume changes.
Technical Paper

Space Life Support from the Cellular Perspective

2001-07-09
2001-01-2229
Determining the fundamental role of gravity in vital biological systems in space is one of six science and research areas that provides the philosophical underpinning for why NASA exists. The study of cells, tissues, and microorganisms in a spaceflight environment holds the promise of answering multiple intriguing questions about how gravity affects living systems. To enable these studies, specimens must be maintained in an environment similar to that used in a laboratory. Cell culture studies under normal laboratory conditions involve maintaining a highly specialized environment with the necessary temperature, humidity control, nutrient, and gas exchange conditions. These same cell life support conditions must be provided by the International Space Station (ISS) Cell Culture Unit (CCU) in the unique environment of space. The CCU is a perfusion-based system that must function in microgravity, at unit gravity (1g) on earth, and from 0.1g up to 2g aboard the ISS centrifuge rotor.
Technical Paper

Tool Integration, from Tool to Tool Chain with ISO 26262

2012-04-16
2012-01-0026
The use of innovative power sources in future cars has long-ranging implications on vehicle safety. We studied these implications in the context of the guidance on software tool qualification in the then current ISO 26262 draft, when building an urban concept vehicle to participate in the 2011 Shell Eco-Marathon. While the guidance on tool qualification is detailed, the guidance in regard to tools integrated into tool chains is limited. It only points out that the environment that tools execute in needs to be taken into consideration. In this paper we clarify the implications of tool chains on tool qualification in the context of ISO 26262 by focusing on answering two questions; first, are there parts of the development environment related to tool integration that are likely to fall outside of tool qualification efforts as currently defined by ISO 26262; secondly, can we define if, and -if so- how, tool integration is affected by ensuring functional safety.
Technical Paper

Chain Representations of Dimensional Control: A Producibility Input for Concurrent Concept Design

1998-06-02
981846
Two critical milestones that must be achieved during concept design are 1) definition of a product architecture that meets performance, producibility, and strategic objectives, and 2) estimation of the integration risk in each candidate concept. This paper addresses these issues by describing the role played by the producibility members of an Integrated Product Team (IPT) during concept design. Our focus is on the execution of the what we call the “chain method”, which illustrates the structure of function delivery in a concept in a simple pictorial way and helps the IPT to understand the advantages or disadvantages of using a modular or an integral product architecture. The producibility members play a central role in capturing and evaluating the chains for different candidate concepts and decompositions.
Technical Paper

A Graphical Workstation Based Part-Task Flight Simulator for Preliminary Rapid Evaluation of Advanced Displays

1992-10-01
921953
Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.
Technical Paper

Cost Awareness in Design: The Role of Data Commonality

1996-02-01
960008
Enhanced information management techniques made available through emerging Information Technology platforms hold a promise of providing significant improvements in both the effectiveness and efficiency of developing complex products. Determining actual management implementations that deliver on this promise has often proven elusive. Work in conjunction with the Lean Aircraft Initiative at MIT has revealed a straight forward use of Information Technology that portends significant cost reductions. By integrating previously separate types of data involved in the process of product development, engineers and designers can make decisions that will significantly reduce ultimate costs. Since the results presented are not specific to particular technologies or manufacturing processes, the conclusions are broadly applicable.
Technical Paper

Development of Columbus Orbital Facility Thermal Mathematical Models for Integrated International Space Station Thermal Analyses

1996-07-01
961540
The Columbus Orbital Facility is being developed as the European laboratory contribution to the United States' led International Space Station programme. The need to exchange thermal mathematical models frequently amongst the Space Station partners for thermal analyses in support of their individual programme milestone, integration and verification activities requires the development of a commonly agreed and effective approach to identify and validate mathematical models and environments. The approach needs to take into account the fact that the partners have different model and software tool requirements and the fact that the models need to be properly tailored to include all the relevant design features. It must also decouple both programmes from the unavoidable design changes they are still undergoing. This problem presents itself for both active and passive thermal interfaces.
Technical Paper

Thin-film Smart Radiator Tiles With Dynamically Tuneable Thermal Emittance

2005-07-11
2005-01-2906
This paper describes recent advances in MPB's approach to spacecraft thermal control based on a passive thin-film smart radiator tile (SRT) that employs a variable heat-transfer/emitter structure. This can be applied to Al thermal radiators as a direct replacement for the existing OSR (optical second-reflector) radiator tiles with a net added mass under 100 gm/m2. The SRT employs a smart, integrated thin-film structure based on the nano-engineering of V1-x-yMxNyOn that facilitates thermal control by dynamically modifying the net infrared emittance passively in response to the temperature of the space structure. Dopants, M and N, are employed to tailor the transition temperature characteristics of the tuneable IR emittance. This facilitates thermal emissivities below 0.3 to dark space at lower temperatures that enhance the self-heating of the spacecraft to reduce heater requirements.
Technical Paper

ATV Thermal Control System

2004-07-19
2004-01-2469
The Automated Transfer Vehicle (ATV) Thermal Control System (TCS) has the task to ensure the required internal environment at level of pressurized module and to thermally control the not pressurised modules and installed equipment, using passive and active control means, in response to the relevant applicable requirements. The ATV vehicle is assially subdivided into three main modules: the Integrated Cargo Carrier (ICC), the Equipped Avionics Bay (EAB) and the Equipped Propulsion Bay (EPB). Each of these modules present elaborated and specific thermal design solutions, to satisfy the different required operative tasks. The extensive thermal analysis campaign performed at ATV vehicle level and in progress for the next Qualification Review (QR) to justify and support the thermal control design solutions and verification status is described.
Technical Paper

Implications of Contingency Planning Support for Weather and Icing Information

2003-06-16
2003-01-2089
A human-centered systems analysis was applied to the adverse aircraft weather encounter problem in order to identify desirable functions of weather and icing information. The importance of contingency planning was identified as emerging from a system safety design methodology as well as from results of other aviation decision-making studies. The relationship between contingency planning support and information on regions clear of adverse weather was investigated in a scenario-based analysis. A rapid prototype example of the key elements in the depiction of icing conditions was developed in a case study, and the implications for the components of the icing information system were articulated.
Technical Paper

Mission Planning and Re-planning for Planetary Extravehicular Activities: Analysis of Excursions in a Mars-Analog Environment and Apollo Program

2006-07-17
2006-01-2297
Future planetary extravehicular activities (EVAs) will go beyond what was experienced during Apollo. As mission duration becomes longer, inevitably, the astronauts on the surface of the Moon and Mars will actively plan and re-plan their own sorties. To design robust decision support aids for these activities, we have to first characterize all the different types of excursions that are possible. This paper describes a framework that organizes parameters and constraints that define a single planetary EVA. We arrived at this framework through case studies: by reviewing the EVA lessons learned during Apollo, conducting an observational study of excursions in a Mars-analog environment, and applying part of the framework to a prototype path planner for human planetary exploration.
Technical Paper

Recommendations for Real-Time Decision Support Systems for Lunar and Planetary EVAs

2007-07-09
2007-01-3089
Future human space exploration includes returning to the Moon and continuing to Mars. Essential to these missions is each planetary extravehicular activity, or EVA, where astronauts and robotic agents will explore lunar and planetary surfaces. Real-time decision support systems will help these explorers in efficiently planning and re-planning under time pressure sorties. Information and functional requirements for such a system are recommended and are based on on-going human-computer collaboration research.
X