Refine Your Search

Topic

Author

Search Results

Journal Article

Ash Permeability Determination in the Diesel Particulate Filter from Ultra-High Resolution 3D X-Ray Imaging and Image-Based Direct Numerical Simulations

2017-03-28
2017-01-0927
Diesel engine exhaust aftertreatment components, especially the diesel particulate filter (DPF), are subject to various modes of degradation over their lifetimes. One particular adverse effect on the DPF is the significant rise in pressure drop due to the accumulation of engine lubricant-derived ash which coats the inlet channel walls effectively decreasing the permeability of the filter. The decreased permeability due to ash in the DPF can result in increased filter pressure drop and decreased fuel economy. A unique two-step approach, consisting of experimental measurements and direct numerical simulations using ultra-high resolution 3D imaging data, has been utilized in this study to better understand the effects of ash accumulation on engine aftertreatment component functionality.
Technical Paper

Computational Aeroacoustics Investigation of Automobile Sunroof Buffeting

2007-05-15
2007-01-2403
A numerical investigation of automobile sunroof buffeting on a prototype sport utility vehicle (SUV) is presented, including experimental validation. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using the PowerFLOW code, a CFD/CAA software package from Exa Corporation based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution.
Technical Paper

Engine-Out “Dry” Particular Matter Emissions from SI Engines

1997-10-01
972890
The Engine-Out Particulate Matter (EOPM) was collected from a spark ignition engine operating in steady state using a heated quartz fiber filter. The samples were weighted to obtain an EOPMindex and were analyzed using Scanning Electron Microscopy. The EOP Mindex was not sensitive to the engine rpm and load. When the mixture is very rich (air equivalence ratio λ less than ∼ 0.7), the EOPM comprise mostly of soot particles from fuel combustion. In the lean to slightly rich region (0.8 < λ < 1.2), however, the EOPM are dominated by particles derived from the lubrication oil.
Technical Paper

Tensile Deformation and Fracture of Press Hardened Boron Steel using Digital Image Correlation

2007-04-16
2007-01-0790
Tensile measurements and fracture surface analysis of low carbon heat-treated boron steel are reported. Tensile coupons were quasi-statically deformed to fracture in a miniature tensile testing stage with custom data acquisition software. Strain contours were computed via a digital image correlation method that allowed placement of a digital strain gage in the necking region. True stress-true strain data corresponding to the standard tensile testing method are presented for comparison with previous measurements. Fracture surfaces were examined using scanning electron microscopy and the deformation mechanisms were identified.
Technical Paper

Liquid Fuel Visualization Using Laser-Induced Fluoresence During Cold Start

1998-10-19
982466
The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence.
Technical Paper

Axiomatic Design for a Total Robust Development Process

2009-04-20
2009-01-0793
In this article, the authors illustrate the benefits of axiomatic design (AD) for robust optimization and how to integrate axiomatic design into a total robust design process. Similar to traditional robust design, the purpose of axiomatic design is to improve the probability of a design in meeting its functional targets at early concept generation stage. However, axiomatic design is not a standalone method or tool and it needs to be integrated with other tools to be effective in a total robust development process. A total robust development process includes: system design, parameter design, tolerance design, and tolerance specifications [1]. The authors developed a step-by-step procedure for axiomatic design practices in industrial applications for consistent and efficient deliverables. The authors also integrated axiomatic design with the CAD/CAE/statistical/visualization tools and methods to enhance the efficiency of a total robust development process.
Technical Paper

Development of Icing Condition Remote Sensing Systems and their Implications for Future Flight Operations

2003-06-16
2003-01-2096
NASA and the FAA are funding the development of ground-based remote sensing systems specifically designed to detect and quantify the icing environment aloft. The goal of the NASA activity is to develop a relatively low cost stand-alone system that can provide practical icing information to the flight community. The goal of the FAA activity is to develop more advanced systems that can identify supercooled large drop (SLD) as well as general icing conditions and be integrated into the existing weather information infrastructure. Both activities utilize combinations of sensing technologies including radar, radiometry, and lidar, along with Internet-available external information such as numerical weather model output where it is found to be useful. In all cases the measured data of environment parameters will need to be converted into a measure of icing hazard before it will be of value to the flying community.
Technical Paper

A Design Tool for Producing 3D Solid Models from Sketches

2004-03-08
2004-01-0482
A novel design tool that produces solid model geometry from computer-generated sketches was developed to dramatically increase the speed of component development. An understanding of component part break-up and section shape early in the design process can lead to earlier part design releases. The concept provides for a method to create 3-dimensional (3D) solid models from 2-dimensional (2D) digital image sketches. The traditional method of creating 3-dimensional surface models from sketches or images involves creation of typical sections and math surfaces by referencing the image only. There is no real use of the sketch within the math environment. An interior instrument panel and steering wheel is described as an example. The engineer begins with a 2-dimensional concept sketch or digital image. The sketch is scaled first by determining at least three known feature diameters.
Technical Paper

Modeling Space Suit Mobility: Applications to Design and Operations

2001-07-09
2001-01-2162
Computer simulation of extravehicular activity (EVA) is increasingly being used in planning and training for EVA. A space suit model is an important, but often overlooked, component of an EVA simulation. Because of the inherent difficulties in collecting angle and torque data for space suit joints in realistic conditions, little data exists on the torques that a space suit’s wearer must provide in order to move in the space suit. A joint angle and torque database was compiled on the Extravehicular Maneuvering Unit (EMU), with a novel measurement technique that used both human test subjects and an instrumented robot. Using data collected in the experiment, a hysteresis modeling technique was used to predict EMU joint torques from joint angular positions. The hysteresis model was then applied to EVA operations by mapping out the reach and work envelopes for the EMU.
Technical Paper

A Framework for Robust Driver Gaze Classification

2016-04-05
2016-01-1426
The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

2011-06-13
2011-38-0065
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Technical Paper

Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments

2006-07-17
2006-01-2132
Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA's Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450°C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity.
Technical Paper

Measurements of Gas Temperature in a HCCI Engine Using a Fourier Domain Mode Locking Laser

2006-04-03
2006-01-1366
Initial measurements of water vapor temperature using a Fourier domain mode locking (FDML) laser were performed in a carefully controlled homogenous charge compression ignition engine with optical access. The gas temperature was inferred from water absorption spectra that were measured each 0.25 crank angle degrees (CAD) over a range of 150 CAD. Accuracy was tested in a well controlled shock tube experiment. This paper will validate the potential of this FDML laser in combustion applications.
Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

1995-10-01
952481
The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
Technical Paper

3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston

1996-05-01
961195
A Lagrangian random vortex-boundary element method has been developed for the simulation of unsteady incompressible flow inside three-dimensional domains with time-dependent boundaries, similar to IC engines. The solution method is entirely grid-free in the fluid domain and eliminates the difficult task of volumetric meshing of the complex engine geometry. Furthermore, due to the Lagrangian evaluation of the convective processes, numerical viscosity is virtually removed; thus permitting the direct simulation of flow at high Reynolds numbers. In this paper, a brief description of the numerical methodology is given, followed by an example of induction flow in an off-centered port-cylinder assembly with a harmonically driven piston and a valve seat situated directly below the port. The predicted flow is shown to resemble the flow visualization results of a laboratory experiment, despite the crude approximation used to represent the geometry.
Technical Paper

Formability Analysis of High Strength Steel Laser Welded Blanks

2005-04-11
2005-01-1326
This paper will describe an investigation of the formability of high strength steel (HSS) laser welded blanks (LWBs). Anticipated combinations of thickness and steel grades, including high strength low alloy (HSLA) and dual phase (DP) steels were selected. The blanks were characterized through chemical analysis and mechanical testing, as well as microstructural analysis of the weld. Samples were strained in a limiting dome height tester. Weld line movement, dome height and strain at failure were then measured. Data from these tests resulted in development of forming limit diagrams, and allowed correlation of weld line movement to forming conditions. In part, the results showed that the presence of the weld has a negative influence on formability, and that balancing the load carrying capacity of each side of the blank results in minimum weld line movement in the blanks.
Technical Paper

Integrating Metal Forming With Other Performance Analyses Using a Mapping Strategy

2005-04-11
2005-01-0357
Sheet metal forming processes change the material properties due to work hardening (or softening) in the thickness direction as well as throughout the entire part. At the same time, uneven thickness distribution, mostly thinning, occurs as the result of forming. This is true for all commonly used sheet metal forming processes including stamping (deep drawing), tube hydroforming, sheet hydroforming and super plastic forming. The effects from forming can sometimes strongly influence the structural performance. Though the CAE analysts have been trying to consider forming effect in their models for performance simulations, there was no easy way to do it consistently and reliably. Some analysts have been trying to modify the initial gage or yield strength to compensate for the property change due to forming. Replace the model with the formed panel is not feasible due to the mesh density difference.
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2005-04-11
2005-01-0542
A co-operative program initiated by the Automotive Aluminum Alliance and supported by USAMP continues to pursue the goal of establishing an in-laboratory cosmetic corrosion test for finished aluminum auto body panels that provides a good correlation with in-service performance. The program is organized as a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee. Initially a large reservoir of test materials was established to provide a well-defined and consistent specimen supply for comparing test results. A series of laboratory procedures have been conducted on triplicate samples at separate labs in order to evaluate the reproducibility of the various lab tests. Exposures at OEM test tracks have also been conducted and results of the proving ground tests have been compared to the results in the laboratory tests. Outdoor tests and on-vehicle tests are also in progress. An optical imaging technique is being utilized for evaluation of the corrosion.
Technical Paper

Impact Ice Adhesion at NASA Glenn: Current Experimental Methods and Supporting Measurements

2023-06-15
2023-01-1444
When examining the literature on the adhesion strength of impact ice, there have been a wide range of methodologies tried to measure the required stresses to induce interfacial delamination. Utilizing the Icing Research Tunnel at the NASA Glenn Research Center to generate the impact ice required for this work, several different mechanical tests have been and are being developed to determine the stresses along the interface between ice and coupon. This set of tests includes the technical mature modified lap joint test which has been used to conduct ice adhesion studies through a wide sweep of icing conditions. To conduct in situ ice adhesion measurements inside of the Icing Research Tunnel, several new experiments are currently being developed to make ice adhesion measurements during and immediately after ice accretion.
Technical Paper

Ground-Based and Airborne Remote Sensing of Inflight Aircraft Icing Conditions

2000-04-11
2000-01-2112
NASA, the FAA, DoD, and NOAA have teamed with industry and academia to develop a capability to detect icing conditions ahead of aircraft using onboard or ground-based remote sensing systems. The goal of the program is to provide pilots with sufficient information to allow avoidance of icing. Information displayed to the pilot, as a measure of icing potential, will be useful in assessing the risk of entering the sensed conditions. This requires measurement and mapping of cloud microphysical parameters, especially cloud and precipitation liquid water content, droplet size and temperature, with range. Remote measurement of cloud microphysical conditions has been studied for years. However, this is the largest focused program devoted to remotely detect aircraft icing conditions. Primary funding sources are NASA Aerospace Operations Systems, the FAA Aviation Weather Research Program and William J.
X