Refine Your Search

Topic

Author

Search Results

Viewing 1 to 19 of 19
Technical Paper

Development of the Compact Flash Evaporator System for Exploration

2007-07-09
2007-01-3204
This paper will discuss the status of the Compact Flash Evaporator System (CFES) development at NASA Glenn. Three alternative heat sink technologies are being developed under Thermal Control for Advanced Capabilities within the Exploration Technology Development Program. One of them is CFES, a spray cooling concept related to the current Space Shuttle Orbiter Flash Evaporator System (FES). In the CFES concept, water is sprayed on the outside of a flat plate heat exchanger, through which flows the vehicle's primary vehicle heat transfer fluid. The steam is then exhausted to space in an open-loop system. Design, fabrication and testing of the CFES at NASA's Glenn Research Center will be reported.
Technical Paper

Microwave Powered Gravitationally Independent Medical Grade Water Generation

2007-07-09
2007-01-3176
The on-demand production of Medical Grade Water (MGW) is a critical biomedical requirement for future long-duration exploration missions. Potentially, large volumes of MGW may be needed to treat burn victims, with lesser amounts required to reconstitute pharmacological agents for medical preparations and biological experiments, and to formulate parenteral fluids during medical treatment. Storage of MGW is an untenable means to meet this requirement, as are nominal MGW production methods, which use a complex set of processes to remove chemical contaminants, inactivate all microorganisms, and eliminate endotoxins, a toxin originating from gram-negative bacteria cell walls. An innovative microgravity compatible alternative, using a microwave-based MGW generator, is described in this paper. The MGW generator efficiently couples microwaves to a single-phase flowing stream, resulting in super-autoclave temperatures.
Technical Paper

Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

2008-06-29
2008-01-2116
Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. Also, the impact of MTSA on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA's Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.
Technical Paper

Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments

2006-07-17
2006-01-2132
Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA's Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450°C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity.
Technical Paper

Fluid Dynamics Assessment of the VPCAR Water Recovery System in Partial and Microgravity

2006-07-17
2006-01-2131
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions. Testing was recently conducted on NASA's C-9B Reduced Gravity Aircraft to determine the microgravity performance of a key component of the VPCAR water recovery system. Six flights were conducted to evaluate the fluid dynamics of the Wiped-Film Rotating Disk (WFRD) distillation component of the VPCAR system in microgravity, focusing on the water delivery method. The experiments utilized a simplified system to study the process of forming a thin film on a disk similar to that in the evaporator section of VPCAR. Fluid issues are present with the current configuration, and the initial alternative configurations were only partial successful in microgravity operation. The underlying causes of these issues are understood, and new alternatives are being designed to rectify the problems.
Technical Paper

Gravity Effects on Premixed and Diffusion Limited Supercritical Water Oxidation

2005-07-11
2005-01-3036
Supercritical water oxidation (SCWO) may become an attractive technology for processing solid and liquid wastes for long duration space and extraterrestrial planetary missions. Gravitational influences on the operation of SCWO reactors are discussed in the context of key dimensionless parameters for two general modes of operation: a “premixed” mode, where the reactants are brought to supercritical temperatures and pressures simultaneously, and a “diffusion limited” mode, where one of the reactants (typically the oxidizer) is injected into the reactor after the bulk fluid is raised to supercritical temperatures and pressures. An experimental facility for testing the gravitational influences on a SCWO reactor is then discussed.
Technical Paper

Water Injection: Disruptive Technology1 to Reduce Airplane Emissions and Maintenance Costs

2004-11-02
2004-01-3108
Water injection is an old aviation technology that was previously used to generate increased engine power during takeoff. If water injection were now to be used without increasing thrust, it could result in large reductions in takeoff NOx emissions and would most likely enable longer engine life and reduced operator costs. Due to the cooling action of evaporating water, a large temperature reduction will be experienced at the point where the water is injected into the engine. This could improve combustion emissions, such as temperature-sensitive NOx, and help reduce temperatures throughout the turbine section of the engine. The two current preferred methods of water injection are: (1) direct injection into the combustor, and (2) misting of the conditioned water before the engine's compressor. Combustor injection could achieve up to 90% NOx reduction and offer few implementation challenges as it has been used in aero-derivative industrial engines for over 30 years.
Technical Paper

Development of Pressure Swing Adsorption Technology for Spacesuit Carbon Dioxide and Humidity Removal

2006-07-17
2006-01-2203
Metabolically produced carbon dioxide (CO2) removal in spacesuit applications has traditionally been accomplished utilizing non-regenerative Lithium Hydroxide (LiOH) canisters. In recent years, regenerative Metal Oxide (MetOx) has been developed to replace the Extravehicular Mobility Unity (EMU) LiOH canister for extravehicular activity (EVA) missions in micro-gravity, however, MetOx may carry a significant weight burden for potential use in future Lunar or planetary EVA exploration missions. Additionally, both of these methods of CO2 removal have a finite capacity sized for the particular mission profile. Metabolically produced water vapor removal in spacesuits has historically been accomplished by a condensing heat exchanger within the ventilation process loop of the suit life support system.
Technical Paper

Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

2004-07-19
2004-01-2444
The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (CO2) from cabin air. CO2 product water vapor measurements from a CDRA test bed unit at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the CO2 desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of ∼40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact.
Technical Paper

Testing of the Multi-Fluid Evaporator Prototype

2008-06-29
2008-01-2166
Hamilton Sundstrand has developed a scalable evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It was designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. This system combines the functions of the Space Shuttle flash evaporator and ammonia boiler into a single compact package with improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. A full-scale unit uses multiple core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A four-core MFE prototype was built in 2007.
Technical Paper

Crew Exploration Vehicle (CEV) Potable Water System Verification Coordination

2008-06-29
2008-01-2083
The Crew Exploration Vehicle (CEV), also known as Orion, will ferry a crew of up to six astronauts to the International Space Station (ISS), or a crew of up to four astronauts to the moon. The first launch of CEV is scheduled for approximately 2014. A stored water system on the CEV will supply the crew with potable water for various purposes: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain quality of the water transferred from the Orbiter to the ISS and stored in Contingency Water Containers (CWCs). In the CEV water system, the ionic silver biocide is expected to be depleted from solution due to ionic silver plating onto the surfaces of the materials within the CEV water system, thus negating its effectiveness as a biocide.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Development Status of the Carbon Dioxide and Moisture Removal Amine Swing-bed (CAMRAS)

2007-07-09
2007-01-3157
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations led by Hamilton Sundstrand is developing an amine based humidity and carbon dioxide (CO2) removal process and prototype equipment for Vision for Space Exploration (VSE) applications. This system employs thermally linked amine sorbent beds operating as a pressure swing adsorption system, using the vacuum of space for regeneration. The prototype hardware was designed based on a two fault tolerant requirement, resulting in a single system that could handle the metabolic water and carbon dioxide load for a crew size of six. Two, full scale prototype hardware sets, consisting of a linear spool valve, actuator and amine sorbent canister, have been manufactured, tested, and subsequently delivered to NASA JSC. This paper presents the design configuration and the pre-delivery performance test results for the CAMRAS hardware.
Technical Paper

Development Status of an EVA-sized Cycling Amine Bed System for Spacesuit Carbon Dioxide and Humidity Removal

2007-07-09
2007-01-3272
Under a NASA sponsored technology development activity, Hamilton Sundstrand has designed, fabricated, tested and delivered a prototype solid amine-based carbon dioxide (CO2) and water (H2O) vapor removal system sized for Extravehicular Activity (EVA) operation. The prototype system employs two alternating and thermally-linked solid amine sorbent beds to continuously remove CO2 and H2O vapor from a closed environment. While one sorbent bed is exposed to the vent loop to remove CO2 and water vapor, the other bed is exposed to a regeneration circuit, defined as either vacuum or an inert sweep gas stream. A linear spool valve, coupled directly to the amine canister assembly, is utilized to simultaneously divert the vent loop flow and regeneration circuit flow between the two sorbent beds.
Technical Paper

Statistical Process Control and Analysis on the Water Content Measurements in NASA Glenn’s Icing Research Tunnel

2023-06-15
2023-01-1413
The Icing Research Tunnel at NASA Glenn follows the recommended practice for calibration outlined in SAE’s ARP5905. The calibration team has followed the schedule of a full calibration every five years with a check calibration done every six months following. The liquid water content of the IRT has maintained stability within the stated specifications of variation within +/- 10% of the curve fit equation generated from calibration data. Using past measurements and data trends, IRT characterization engineers wanted to develop methods for the ability to know when data were not within variation. Trends can be observed in the liquid water content measurement process by constructing statistical process control charts. This paper describes data processing procedures for the Multi-Element Sensor in the IRT, including collision efficiency corrections, canonical correlation analysis, process for rejection of data, and construction of control charts.
Technical Paper

Aircraft In Situ Validation of Hydrometeors and Icing Conditions Inferred by Ground-based NEXRAD Polarimetric Radar

2015-06-15
2015-01-2152
MIT Lincoln Laboratory is tasked by the U.S. Federal Aviation Administration to investigate the use of the NEXRAD polarimetric radars* for the remote sensing of icing conditions hazardous to aircraft. A critical aspect of the investigation concerns validation that has relied upon commercial airline icing pilot reports and a dedicated campaign of in situ flights in winter storms. During the month of February in 2012 and 2013, the Convair-580 aircraft operated by the National Research Council of Canada was used for in situ validation of snowstorm characteristics under simultaneous observation by NEXRAD radars in Cleveland, Ohio and Buffalo, New York. The most anisotropic and easily distinguished winter targets to dual pol radar are ice crystals.
Technical Paper

Predicted Ice Shape Formations on a Boundary Layer Ingesting Engine Inlet

2019-06-10
2019-01-2025
Computational ice shapes were generated on the boundary layer ingesting engine nacelle of the D8 Double Bubble aircraft. The computations were generated using LEWICE3D, a well-known CFD icing post processor. A 50-bin global drop diameter discretization was used to capture the collection efficiency due to the direct impingement of water onto the engine nacelle. These discrete results were superposed in a weighted fashion to generate six drop size distributions that span the Appendix C and O regimes. Due to the presence of upstream geometries, i.e. the fuselage nose, the trajectories of the water drops are highly complex. Since the ice shapes are significantly correlated with the collection efficiency, the upstream fuselage nose has a significant impact on the ice accretion on the engine nacelle. These complex trajectories are caused by the ballistic nature of the particles and are thus exacerbated as particle size increases.
Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

2019-06-10
2019-01-2027
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
Journal Article

International Space Station United States Orbital Segment Oxygen Generation System On-orbit Operational Experience

2008-06-29
2008-01-1962
The International Space Station (ISS) United States Orbital Segment (USOS) Oxygen Generation System (OGS) was originally intended to be installed in ISS Node 3. The OGS rack delivery was accelerated, and it was launched to ISS in July of 2006 and installed in the US Laboratory Module. Various modification kits were installed to provide its interfaces, and the OGS was first activated in July of 2007 for 15 hours. In October of 2007 it was again activated for 76 hours with varied production rates and day/night cycling. Operational time in each instance was limited by the quantity of feedwater in a Payload Water Reservoir (PWR) bag. Feedwater will be provided by PWR bag until the USOS Water Recovery System (WRS) is delivered to ISS in fall of 2008. This paper will discuss operating experience and characteristics of the OGS, as well as operational issues and their resolution.
X