Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modeling Space Suit Mobility: Applications to Design and Operations

2001-07-09
2001-01-2162
Computer simulation of extravehicular activity (EVA) is increasingly being used in planning and training for EVA. A space suit model is an important, but often overlooked, component of an EVA simulation. Because of the inherent difficulties in collecting angle and torque data for space suit joints in realistic conditions, little data exists on the torques that a space suit’s wearer must provide in order to move in the space suit. A joint angle and torque database was compiled on the Extravehicular Maneuvering Unit (EMU), with a novel measurement technique that used both human test subjects and an instrumented robot. Using data collected in the experiment, a hysteresis modeling technique was used to predict EMU joint torques from joint angular positions. The hysteresis model was then applied to EVA operations by mapping out the reach and work envelopes for the EMU.
Technical Paper

Effects of Enhanced Pressure Suit Ankle Mobility on Locomotion on Uneven Terrain

2000-07-10
2000-01-2481
Previous studies have shown that a multi-axis ankle joint accommodating abduction and adduction as well as ankle flexion/extension and rotation could be practically incorporated into a pressure suit. Several candidate configurations were manufactured and the performance of the enhanced ankle joints evaluated. Experience has suggested that these enhancements could be of significant benefit for planetary exploration missions requiring extensive walking over uneven terrain. During 1999, prototype pressure suit boots incorporating a multi-axis ankle joint configuration were manufactured. Their effect on balance stability and locomotion capabilities across slopes and over uneven surfaces in a pressurized spacesuit were evaluated in a series of 1-g experiments. This paper describes the enhanced test boots, the test procedure, and the results. Design refinements and further testing are recommended.
X