Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

An Assessment of Vehicle Side-Window Defrosting and Demisting Process

2001-03-05
2001-01-0289
The thermal comfort of passengers within a vehicle is often the main objective for the climate control engineer; however, the need to maintain adequate visibility through the front and side windows of a vehicle is a critical aspect of safe driving. This paper compares the performance of the side window defrosting and demisting mechanism of several current model vehicles. The study highlights the drawbacks of current designs and points the way to improved passive defrosting mechanisms. The investigation is experimental and computational. The experiments are carried out using full-scale current vehicle models. The computational study, which is validated by the experiments, is used to perform parametric investigation into the side window defrosters performance. The results show that the current designs of the side-defroster nozzles give maximum airflow rates in the vicinity of the lower part of the window, which yields unsatisfactory visibility.
Technical Paper

Analysis of Factors Affecting Rainwater Ingestion into Vehicles HVAC Systems

2001-03-05
2001-01-0293
The penetration of rainwater through the heating ventilation and air conditioning system (HVAC) of a vehicle directly affects the provision of thermal comfort within the vehicle passenger compartment. Present vehicle designs restrict considerably the air-management processes due to reduced space and tighter packaging. The motivation for the study is to get an insight into factors affecting the water ingress phenomenon when a stationary vehicle is subjected to water loading such as heavy rain when parked or waiting in a traffic light or when in a car wash. The test programme made use of a compact closed circuit full-scale automotive climatic wind tunnel that is able to simulate wind, rain and road inclination. The tunnel was developed as part of the collaborative research between the Flow Diagnostics Laboratory (FDL) of the University of Nottingham and Visteon Climate Control Systems [1].
Technical Paper

PIV Measurement and Numerical Simulation of Airflow Field in a Road Vehicle HVAC Cowl Box

2001-03-05
2001-01-0294
The analysis of airflow in an automotive HVAC cowl box is complicated by the cross sectional variations and abrupt changes in airflow direction. In this study, the complex three-dimensional turbulent flow found in a generic road vehicle cowl box is investigated experimentally and computationally. An optical anemometer is used to acquire the experimental data within a white metal sheet of a cowl box. The results are then used to validate and tune a Computational Fluid Dynamics (CFD) numerical cowl model.
Technical Paper

Comparison of Performance between Several Vehicle Windshield Defrosting and Demisting Mechanisms

2001-03-05
2001-01-0582
The safety and comfort aspects of passenger cars are significant sales argument and have become a topic of rising importance during the development process of a new car. The objective of this study is to compare the performance of several current model vehicles, highlight the drawbacks of current defrosting/demisting systems and point the way to improved passive mechanisms. The investigation is experimental. The experiments are carried out using full-scale current vehicle models. The results show that the current designs of the defroster nozzle give maximum airflow rates in the vicinity of the lower part of the windshield, which decrease gradually towards the upper parts of the windshield. This hinders and limits the vision of the driver, particularly at the top of the windshield, which can be uncomfortable and indeed dangerous.
Technical Paper

Towards Understanding Water Ingestion into Vehicle HVAC System- PIV Validation of a CFD Simulation

2001-05-14
2001-01-1752
The analysis of airflow in an automotive HVAC cowl box is complicated by the cross sectional variations and abrupt changes in airflow direction. In this study, the complex three-dimensional turbulent flow found in a generic road vehicle cowl box is investigated experimentally and computationally. An optical anemometer is used to acquire the experimental data within a white metal sheet of a cowl box. The results are then used to validate and tune a Computational Fluid Dynamics (CFD) numerical cowl model.
Technical Paper

Control of Passenger Vehicle Internal Aerodynamics Through Forced Air Extraction

2002-03-04
2002-01-0234
The increasing competitiveness in the automobile market has resulted in the incorporation by the manufacturers of certain features in newer cars that are deemed highly desirable by the customer. Among such features that require improvement is the thermal comfort of passengers' within the cabin. Thermal comfort is in increasing demand from motorists bound to cover more mileage driving cars than ever before. As a result, car makers are striving for improved climate conditions inside the car to meet passenger demand for more comfortable trips. The need to improve the climatic comfort within the vehicle is critical not only to passengers' comfort but also to their safety. However, to make progress in this area, a good understanding of the airflow behaviour within the vehicle interior is required. This paper, reports on a novel idea of control the air movement within the cabin by forcibly removing the air from strategically positioned vents.
X