Refine Your Search

Topic

Author

Search Results

Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Journal Article

Diesel Combustion Noise Reduction by Controlling Piston Vibration

2015-04-14
2015-01-1667
It has been required recently that diesel engines for passenger cars meet various requirements, such as low noise, low fuel consumption, low emissions and high power. The key to improve the noise is to reduce a combustion noise known as “Diesel knock noise”. Conventional approaches to reduce the diesel knock are decreasing combustion excitation force due to pilot/pre fuel injection, adding ribs to engine blocks or improving noise transfer characteristics by using insulation covers. However, these approaches have negative effects, such as deterioration in fuel economy and increase in cost/weight. Therefore, modification of engine structures is required to reduce it. We analyzed noise transfer paths from a piston, a connecting rod, a crank shaft to an engine block and vibration behavior during engine operation experimentally, and identified that piston resonance was a noise source.
Journal Article

Cycle-by-Cycle Analysis of Cold Crank-Start in a GDI Engine

2016-04-05
2016-01-0824
The first 3 cycles in the cold crank-start process at 20°C are studied in a GDI engine. The focus is on the dependence of the HC and PM/PN emissions of each cycle on the injection strategy and combustion phasing of the current and previous cycles. The PM/PN emissions per cycle decrease by more than an order of magnitude as the crank-start progresses from the 1st to the 3rd cycle, while the HC emissions stay relatively constant. The wall heat transfer, as controlled by the combustion phasing, during the previous cycles has a more significant influence on the mixture formation process for the current cycle than the amount of residual fuel. The results show that the rise in HC emissions caused by the injection spray interacting with the intake valves and piston crown is reduced as the cranking process progresses. Combustion phasing retard significantly reduces the PM emission. The HC emissions, however, are relatively not sensitive to combustion phasing in the range of interest.
Technical Paper

Perceptions of Two Unique Lane Centering Systems: An FOT Interview Analysis

2020-04-14
2020-01-0108
The goal of this interview analysis was to explore and document the perceptions of two unique lane centering systems (S90’s Pilot Assist and CT6’s Super Cruise). Both systems offer a similar type of functionality (adaptive cruise control and lane centering), but have significantly different design philosophies and HMI (Human-Machine Interface) implementations. Twenty-four drivers drove one of the two vehicle models for a month as part of a field operational test (FOT) study. Upon vehicle return, drivers took part in a 60-minute semi-structured interview covering their perceptions of the vehicle’s various advanced driver-assistance systems (ADAS). Transcripts of the interviews were coded by two researchers, who tagged each statement with relevant system and perception code labels. For analysis, the perception codes were grouped into larger thematic bins of safety, comfort, driver attention, and system performance.
Journal Article

A Study on Design Factors of Gas Pedal Operation

2012-04-16
2012-01-0073
Lateral distance from the center of a driver's seating position to the gas and brake pedals is one of the main design factors that relates to the ease of stepping on the pedals from one and the other. It is important to keep a certain distance between the pedals to prevent erroneous operations or to reduce the driver's anxiety. In this paper, we explain that the distance between the pedals is affected by the driver's seating height. In other words, if the driver sits lower, the accuracy of stepping on the pedals from the gas pedal to the brake pedal will increase compared to the higher seating position. In addition, we found out that providing auxiliary parts for the leg support enhances the accuracy of the pedal operations.
Technical Paper

The Concept of Future Man-Machine System and the Evaluation Method of Vigilance

1991-02-01
910114
We have proposed a human mimetic machine, using electronics control technology, which is quasi-human like an android equipped with volition as a new technical concept for man-machine systems. This machine determines the driver's physiological and psychological conditions and, in response, controls surrounding stimuli, such as sounds and vibrations. In this way, the relationship between the driver and the vehicle is made more human like. To determine the significance of the human mimetic machine, we have been developing a biofeedback vigilance control system, which maintains an optimum vigilance level during driving by controlling stimuli. In the first stage of the study, we have developed an accurate method to determine vigilance level using multiple regression analysis of electroencephalograms.
Technical Paper

The Driving Simulator with Large Amplitude Motion System

1991-02-01
910113
An Advanced driving simulator has been developed at Mazda Yokohama Research Center. The primary use of this simulator is to research future driver-vehicle systems. In an emergency situation, a driver must respond rapidly to perceived motion and visual stimulus to avoid an accident. In such cases, because the time delay associated with the perception of motion cues is shorter than visual and auditory cues, the driver will strongly rely upon perceived motion to control the vehicle. Hence, a driving simulator to be used in the research of driver-vehicle interactions in emergency driving must include a high performance motion system capable of large amplitude lateral motion. The Mazda simulator produces motion cues in four degrees of freedom, provides visual and auditory cues, and generates control feel on the steering wheel. This paper describes the merit of the large amplitude motion system and the features of this newly developed driving simulator.
Technical Paper

Modeling the Spark Ignition Engine Warm-Up Process to Predict Component Temperatures and Hydrocarbon Emissions

1991-02-01
910302
In order to understand better the operation of spark-ignition engines during the warm-up period, a computer model had been developed which simulates the thermal processes of the engine. This model is based on lumped thermal capacitance methods for the major engine components, as well as the exhaust system. Coolant and oil flows, and their respective heat transfer rates are modeled, as well as friction heat generation relations. Piston-liner heat transfer is calculated based on a thermal resistance method, which includes the effects of piston and ring material and design, oil film thickness, and piston-liner crevice. Piston/liner crevice changes are calculated based on thermal expansion rates and are used in conjunction with a crevice-region unburned hydrocarbon model to predict the contribution to emissions from this source.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

The Mars Gravity Biosatellite: Atmospheric Reconditioning Strategies for Extended-Duration Rodent Life Support

2007-07-09
2007-01-3224
We present results which verify the design parameters and suggest performance capabilities/limitations of the Mars Gravity Biosatellite's proposed atmospherics control subassembly. Using a combination of benchtop prototype testing and analytic techniques, we derive control requirements for ammonia. Further, we demonstrate the dehumidification performance of our proposed partial gravity condensing heat exchanger. Ammonia production is of particular concern in rodent habitats. The contaminant is released following chemical degradation of liquid waste products. The rate of production is linked to humidity levels and to the design of habitat modules in terms of bedding substrate, air flow rates, choice of structural materials, and other complex factors. Ammonia buildup can rapidly lead to rodent health concerns and can negatively impact scientific return.
Technical Paper

The Mars Gravity Biosatellite: Thermal Design Strategies for a Rotating Partial Gravity Spacecraft

2007-07-09
2007-01-3078
A rotating spacecraft which encloses an atmospheric pressure vessel poses unique challenges for thermal control. In any given location, the artificial gravity vector is directed from the center to the periphery of the vehicle. Its local magnitude is determined by the mathematics of centripetal acceleration and is directly proportional to the radius at which the measurement is taken. Accordingly, we have a system with cylindrical symmetry, featuring microgravity at its core and increasingly strong gravity toward the periphery. The tendency for heat to move by convection toward the center of the craft is one consequence which must be addressed. In addition, fluid flow and thermal transfer is markedly different in this unique environment. Our strategy for thermal control represents a novel approach to address these constraints. We present data to theoretically and experimentally justify design decisions behind the Mars Gravity Biosatellite's proposed payload thermal control subassembly.
Technical Paper

Detection of Transient Noise of Car Interior Using Non-stationary Signal Analysis

1998-02-23
980589
A method to inspect the rattle generated in a vehicle cabin has been developed. In the method, the waveform of overall in-cabin noise is analyzed using Wigner distribution, a kind of time-frequency analysis, and the rattle component of the waveform is condensed and separated from the background shake noise. Then the rattle component is classified into three levels, strong, middle and not detected, using a neural network. Fuzzy inference is also used to select normal waveform data. Experimental results show that the correct classification ratio of the method is more than 90%, which equals the ability of skilled inspectors.
Technical Paper

Rapid Compression Machine Measurements of Ignition Delays for Primary Reference Fuels

1990-02-01
900027
A rapid compression machine for chemical kinetic studies has been developed. The design objectives of the machine were to obtain: 1)uniform well-defined core gas; 2) laminar flow condition; 3) maximum ratio of cooling to compression time; 4) side wall vortex containment; and, 5) minimum mechanical vibration. A piston crevice volume was incorporated to achieve the side wall vortex containment. Tests with inert gases showed the post-compression pressure matched with the calculated laminar pressure indicating that the machine achieved these design objectives. Measurements of ignition delays for homogeneous PRF/O2/N2/Ar mixture in the rapid compression machine have been made with five primary reference fuels (ON 100, 90, 75, 50, and 0) at an equivalence ratio of 1, a diluent (s)/oxygen ratio of 3.77, and two initial pressures of 500 Torr and 1000 Torr. Post-compression temperatures were varied by blending Ar and N2 in different ratios.
Technical Paper

Balancing Design Functional Coupling and Sensitivity to Noise to Achieve the Design Target

2007-04-16
2007-01-1207
The primary objective in design is to achieve the target value of the design's response function. If a design fails to achieve the target value, it most likely fails in two ways: inconsistent functional output and in design involving multiple response functions, unable to converge to the multiple target values in spite of iterative adjustment of the design parameters. The former is symptom of a design not able to perform in the presence of variability, i.e., noise. The latter is symptom of a design that fails to perform in the presence of functional coupling. Both problems are best addressed at the conceptual stage of the design at which only design solution that is inherently robust to noise and functionally uncoupled is entertained. If this is not possible, the alternative is to exploit the interaction between control variables and variables that are sources of noise and functional coupling to render the design insensitive to them.
Technical Paper

Investigation of the Dilution Process for Measurement of Particulate Matter from Spark-Ignition Engines

1998-10-19
982601
Measurements of particulate matter (PM) from spark ignition (SI) engine exhaust using dilution tunnels will become more prevalent as emission standards are tightened. Hence, a study of the dilution process was undertaken in order to understand how various dilution related parameters affect the accuracy with which PM sizes and concentrations can be determined. A SI and a compression ignition (CI) engine were separately used to examine parameters of the dilution process; the present work discusses the results in the context of SI exhaust dilution. A Scanning Mobility Particle Sizer (SMPS) was used to measure the size distribution, number density, and volume fraction of PM. Temperature measurements in the exhaust pipe and dilution tunnel reveal the degree of mixing between exhaust and dilution air, the effect of flowrate on heat transfer from undiluted and diluted exhaust to the environment, and the minimum permissible dilution ratio for a maximum sample temperature of 52°C.
Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 3 Airflow Velocity Distribution with Foot Mode

2010-04-12
2010-01-1065
Following the previous reports, ventilation characteristics in automobile was investigated by using a half-scale car model which was created by the Society of Automotive Engineers of Japan (JSAE). In the present study, the ventilation mode of the cabin was foot mode which was the ventilation method for using in winter season. Supplied air was blown from the supply openings under the dashboard to the rear of the model via the driver's foot region in this mode. The experiment was performed in order to obtain accurate data about the airflow properties equipped with particle image velocimetry (PIV). Our experimental data is to be shared as a standard model to assess the environment within automobiles. The data is also for use in computational fluid dynamics (CFD) benchmark tests in the development of automobile air conditioning, which enables high accuracy prediction of the interior environment of automobiles.
Technical Paper

Diagnosis and Objective Evaluation of Gear Rattle

1991-05-01
911082
The objectives of this work were to establish a method to diagnose the source of gear rattle and to evaluate the rattle objectively. The methods are described in detail, applied to two passenger cars as an example. Investigations were conducted into transmission rattle under transient conditions. By analysing the transmission casing vibration with respect to the engine flywheel angle, and presenting the data in the form of contour maps, it was shown that the two vehicles had different characteristics of gear impacts. Further measurements of the angular motion of each gear revealed the impact conditions at the input mesh in the transmission largely controlled the character of the rattle and were fundamentally different between the two vehicles. A rattle index was developed, based on the casing vibration under transient driving conditions.
Technical Paper

Estimation Method for Automobile Aerodynamic Noise

1992-02-01
920205
Cost and weight reduction considerations make it very important to evaluate and reduce aerodynamic noise in the early stage of vehicle develpment. For these reasons, a method to evaluate aerodynamic noise quantitatively is needed. As an initial step, our first paper investigated airflow around the A-pillar of a full-scale vehicle. As a result, vortical flow structure and the influence of the vortical flow on the pressure fluctuations were clarified. As the second step, this paper presents an estimation method for the aerodynamic noise from a vehicle. Based on Lighthill's equation, we propose an evaluation equation to estimate aerodynamic noise. The aerodynamic noise radiated externally from a vehicle is estimated as ∑(Pfi,fi,Sfi)2 Where Pfi is the fluctuating pressure on the surface of the vehicle, fi the frequency and Sfi the correlation area. The method is applied to the aerodynamic noise problem associated with the A-pillar of a vehicle.
Technical Paper

Application of Vibration Damping Steel Sheet for Autobody Structural Parts

1992-02-01
920249
As a demand for vehicles of higher functionality grows, automakers and material suppliers are devoting increasing efforts to develop technologies for greater safety, lighter weight, higher corrosion resistance, and enhanced quietness. The resin-sandwiched vibration damping steel sheet (VDSS), developed as a highly functional material for reducing vehicle vibration and noise, has been used for oil pans1) and compartment partitions2). First applied for a structural dash panel of the new Mazda 929, a Zn-Ni electroplated VDSS which allows direct electric welding has contributed to greater weight reduction as well as improved quietness.
Technical Paper

Additional Findings on the Multi-Modal Demands of “Voice-Command” Interfaces

2016-04-05
2016-01-1428
This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
X