Refine Your Search

Topic

Author

Search Results

Journal Article

Brain Waves Measurement Based Evaluation of Mental Workload Related to Visual Information While Driving

2011-04-12
2011-01-0593
In order to build a useful and comfortable in-car human machine interface systems, the information presentation method should be easy to understand (low mental workload) and one should be able to respond with ease to the information presented (low response workload). We are making efforts to establish an evaluation method that would differentiate between mental workload and response workload. Here, we present the results of our trial using brain waves measurements (Eye Fixation Related Potentials). We focus on the relation between P3 latencies and drivers response workload compared to mental workload in a task involving eye movements. Previous experiments showed that P3 latency correlates strongly with the amount of information presented. The current experiment shows that P3 latencies seem to be independent to the type of response the subject is requested to perform.
Technical Paper

Spacelab Neurovestibular Hardware

1991-07-01
911566
A set of devices for measurement of human balance orientation and eye movements in weightlessness was developed for neurovestibular experiments on Spacelab. The experiments involve astronaut motion, limb position changes, and moving visual fields, measurements are made of eye movements, muscular activity and orientation perception. This joint US/Canadian research program represent a group of closely related experiments designed to investigate space motion sickness, any associated changes in otolith-mediated responses occurring during weightlessness, and the continuation of changes to postflight conditions. The otoliths are a component of the vestibular apparatus which is located in the middle ear. It is responsible for maintaining the body's balance. Gravitational pull on the otoliths causes them to constantly appraise the nervous system of the position of the head with respect to the direction of gravity.
Technical Paper

A Study of Compatibility and Vehicle Front Stiffness Based on Real-World Accidents

2007-08-05
2007-01-3719
The aim of this research was to find vehicle characteristics including stiffness that is effective for compatibility performance. Compatibility is said to be affected by three factors: vehicle mass, geometry and stiffness (1, 2). Of these factors, stiffness has more flexibility at the design stage than vehicle mass and geometry which are limited by the vehicle application. However, the stiffness is assumed to have a conflict issue between the self-protection and the partner-protection (3). In this research, it was analyzed comprehensively how some defined factors such as stiffness, mass, crash stroke and other vehicle characteristics indices relate to each occupant injury rate of the case and its partner vehicle in the real-world accidents. Both “front-to-front” and “front-to-side” crash occupants were covered.
Technical Paper

Trends in Vehicle Information Displays in the Multimedia Era

1998-10-19
98C035
Flat panel displays for automobiles are facing a new era with the development of navigation systems. As navigation systems become more important as driver's assistance devices, development of birds-eye-view and 3D displays continues, as well as improvements for larger display screens and higher mounting positions. In response to the progress of mobile multimedia technologies, demands for larger display screens and larger aspect ratios have been increasing. Significance for improvements to anti-glare features or view angles has increased as they provide better visibility and the increase layout options. The use of human machine information interaction, which interfaces visual, audio and tactile senses, makes it possible to realize safer, more convenient and comfortable multimedia era vehicle
Technical Paper

Development of Side Impact Air Bag System for Head and Chest Protection

1998-05-31
986165
Most of the side impact air bag systems in the current market are designed to protect the thorax area only. The new Head and Thorax SRS Side Impact Air Bag system, which Nissan recently introduced into the market, was designed to help provide additional protection for the head in certain side impacts. The system may help protect occupant head contacts when the vehicle collides into a tree, or the high hood of a large striking vehicle. This paper introduces the additional features and function of the new Head and Thorax SRS Side Impact Air Bag system, and some evaluation results in laboratory testing.
Technical Paper

The Application of Optimization Techniques to Design a Foam Pad to Reduce Lower-Extremity Injuries

2008-04-14
2008-01-0523
The present study had two aims: (1) to develop a model which reproduced the dummy lower leg kinematics observed in a high-speed test, and (2) to develop a methodology to assess various theoretical design parameters of a heel foam pad to reduce the risk of the lower extremity injuries. To address the first aim, a MADYMO sled simulation model was developed. The interior parts were represented mainly with finite element (FE) models, with intent to capture deformations and the reaction force directions. Moreover, the occupant responses were estimated from the refined version of the dummy model (i.e., the Hybrid III model; Q dummy model). The model was acceptably correlated to experiments. To address the second aim, the model was simplified for subsequent optimization of the heel foam pad.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

Study of BioRID II Sled Testing and MADYMO Simulation to Seek the Optimized Seat Characteristics to Reduce Whiplash Injury

2004-03-08
2004-01-0336
Development of anti-whiplash technology is one of the hottest issues in the automotive safety field because of the frequent occurrence of rear impact accidents. We analyzed the whiplash mechanism and conducted a study to seek the optimized seat characteristics with BioRID II and MADYMO simulations. A parameter study was made to construct a conceptual theory to decrease NIC, Neck Injury Criteria, with the MADYMO model. As a result of the study, head restraint position and seatback stiffness were found to affect dummy movement and injury values. Applying the NIC mechanism and the influential parameters to the MADYMO model, the optimized seat characteristics for whiplash prevention were obtained.
Technical Paper

Impact Simulation of the CFRP Structure for a GT-Car

2003-10-27
2003-01-2768
CFRP (Carbon Fiber Reinforced Plastic) materials have been extensively used in racing cars because of its high stiffness and lightweight. Recently, car crash safety is becoming increasingly important even for racing cars. CFRP has also a merit on crash safety because it offers the freedom to set the material characteristics where needed and the needless of considering remaining length after the impact. In this analysis, a multi-layered shell material is applied to reproduce the crash characteristics of the CFRP structure. Fundamental crash test data of simple specimens are used to verify the material characteristics of CFRP, and applied to the Crash-Box of a Nissan GT500 racing car. The simulation showed good correlation with the actual test, and the final design was based on these analyses without the need of repeating impact tests.
Technical Paper

Validation of SID2s Dummy FE-Model and Study of Relation between Design Parameter and Injury

2003-10-27
2003-01-2820
The accuracy of FE (Finite Element) side impact dummy characteristics is important when using FE vehicle model for vehicle development. This study evaluated the response characteristics of FE SID-lls dummy (5TH female) model that was developed by FTSS using FE code PAM-CRASH™. This paper will describe improvements of computational evaluation method and FE dummy model in the sled tests simulated interior. For the various impact conditions, good correlation between FE calculation and the sled test results was obtained.
Technical Paper

Analysis of Interior Airflow in a Full-Scale Passenger-Compartment Model Using a Laser-Light-Sheet Method

1992-02-01
920206
Flow velocity distributions in the passenger compartment were measured from visualized images of particle flow paths obtained with a full-scale model. The flow paths were visualized using an approach that combined a particle tracing method with a pulse-laser light technique. Air was used as the fluid medium with the full-scale passenger compartment model and water was used as the fluid medium with a one-fourth scale model. A comparison of the results obtained with the two models confirmed that there was good agreement between the flow velocity distributions. Using the full-scale model, measurements were also made of the flow velocity distributions when two dummies were placed in the front-seats.
Technical Paper

Application of CAP to Analyze Mechanisms Producing Dummy Injury Readings under U.S. Side Impact Test Conditions

2011-04-12
2011-01-0014
Evaluations of dummy injury readings obtained in regulatory crash tests and new car assessment program tests provide indices for the development of crash safety performance in the process of developing new vehicles. Based on these indices, vehicle body structures and occupant restraint systems are designed to meet the required occupant injury criteria. There are many types of regulatory tests and new car assessment program tests that are conducted to evaluate vehicle safety performance in side impacts. Factoring all of the multiple test configurations into the development of new vehicles requires advanced design capabilities based on a good understanding of the mechanisms producing dummy injury readings. In recent years, advances in computer-aided engineering (CAE) tools and computer processing power have made it possible to run simulations of occupant restraint systems such as side airbags and seatbelts.
Technical Paper

Additional Findings on the Multi-Modal Demands of “Voice-Command” Interfaces

2016-04-05
2016-01-1428
This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
Technical Paper

Observed Differences in Lane Departure Warning Responses during Single-Task and Dual-Task Driving: A Secondary Analysis of Field Driving Data

2016-04-05
2016-01-1425
Advanced driver assistance systems (ADAS) are an increasingly common feature of modern vehicles. The influence of such systems on driver behavior, particularly in regards to the effects of intermittent warning systems, is sparsely studied to date. This paper examines dynamic changes in physiological and operational behavior during lane departure warnings (LDW) in two commercial automotive systems utilizing on-road data. Alerts from the systems, one using auditory and the other haptic LDWs, were monitored during highway driving conditions. LDW events were monitored during periods of single-task driving and dual-task driving. Dual-task periods consisted of the driver interacting with the vehicle’s factory infotainment system or a smartphone to perform secondary visual-manual (e.g., radio tuning, contact dialing, etc.) or auditory-vocal (e.g. destination address entry, contact dialing, etc.) tasks.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

An Exploratory Study of the Driver Workload Assessment by Brain Functional Imaging Using Onboard fNIRS

2011-04-12
2011-01-0592
In making driver workload assessments, it is important to evaluate the driver's level of brain activity because the operation of a motor vehicle presumably involves higher-order brain functions. Driving on narrow roads in particular probably imposes a load on the driver's brain functions because of the need to be cognizant of the tight space and to pay close attention to the surroundings. Test vehicles were fitted with a functional near-infrared spectroscopy (fNIRS) system for measuring bloodstream concentrations at 32 locations in the frontal lobe of the participating drivers in order to evaluate their levels of mental activity while driving on narrow roads. The results revealed significant increases in cerebral blood flow corresponding to the perceived workload. This suggests that increases in cerebral blood flow can be used as an effective index for estimating mental workloads.
Technical Paper

Appling CAE to Understand the Causality of Dummy Neck Injury Readings

2011-04-12
2011-01-1069
The progress of computer technology and CAE methodology makes it possible to simulate dummy injury readings in vehicle crash simulations. Dummy neck injuries are generally more difficult to simulate than injuries to other regions such as the head or chest. Accordingly, improving the accuracy of dummy neck injury data is a major concern in frontal occupant safety simulations. This paper describes the use of an advanced airbag modeling methodology to improve the accuracy of dummy neck injury readings. First, the following items incorporated in the advanced airbag model are explained. (1) The Finite Point Method (FPM) is used to simulate the flow of gas. (2) A folding model is applied to simulate the folded condition. (3) The fabric material properties used in the simulation take into account anisotropy in the fiber directions and the nonlinear, hysteresis characteristics of stiffness.
Technical Paper

A Study for Understanding Carsickness Based on the Sensory Conflict Theory

2006-04-03
2006-01-0096
Two hypotheses based on the sensory conflict theory were postulated as possible means for reducing carsickness: (1) Reducing signals from the vestibular and vision systems through a reduction of low-frequency motion would mitigate carsickness and (2) Controlling stimulation of visual organs so as to reduce the amount of sensory conflict would mitigate carsickness. For hypothesis (1), the relations between subjective carsickness ratings and motions of the vehicle and passengers' body were investigated. Greater correlation was found between carsickness ratings and motions of the passengers' head, where the organs of the vestibular and vision systems are located, than between carsickness ratings and vehicle motions. For hypothesis (2), the incidence of carsickness in passengers who gazed at an in-vehicle display was investigated because there seemed to be large conflict between the vestibular system and the vision system.
Technical Paper

Investigation of a Test Method to Reproduce Car-to-Car Side Impacts

2020-04-14
2020-01-1221
A side impact is one of the severest crash configurations among real-world accidents. In the US market, even though most vehicles have achieved top ratings in crash performance assessment programs in recent years, there has hardly been any sign of a decline in side-impact fatalities for the last few years, according to statistics retrieved from the National Highway Traffic Safety Administration’s Fatality Analysis Reporting System. In response to this trend, the Insurance Institute for Highway Safety (IIHS) is planning to introduce a new test protocol for side impact assessment. One of the points to be clarified in current side impact tests is whether the present side moving deformable barrier (MDB), which includes the barrier face and cart, faithfully reproduces a real-world car-to-car crash.
Technical Paper

Development of a Method for Reducing the Driver's Work Load Using a Human Body Model Based on Biomechanisms

1996-02-01
960948
A human body model has been developed for conducting personal computer simulations to evaluate physical work loads, especially muscle loads, associated with the driving position and arm and leg motions. The validity of the model was confirmed by comparing estimated work loads with electromyographic measurements. Correlation analyses were conducted to examine the relationship between the estimated loads and subjective evaluations. The results indicated the regions of the body where loads had the largest impact on the perceived sensation of physical effort and were used to derive an index for evaluating the overall work load of the entire body. The simulation method was used to evaluate control switch positions, driving position and vehicle entry/exit motions.
X