Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Development of Icing Condition Remote Sensing Systems and their Implications for Future Flight Operations

2003-06-16
2003-01-2096
NASA and the FAA are funding the development of ground-based remote sensing systems specifically designed to detect and quantify the icing environment aloft. The goal of the NASA activity is to develop a relatively low cost stand-alone system that can provide practical icing information to the flight community. The goal of the FAA activity is to develop more advanced systems that can identify supercooled large drop (SLD) as well as general icing conditions and be integrated into the existing weather information infrastructure. Both activities utilize combinations of sensing technologies including radar, radiometry, and lidar, along with Internet-available external information such as numerical weather model output where it is found to be useful. In all cases the measured data of environment parameters will need to be converted into a measure of icing hazard before it will be of value to the flying community.
Technical Paper

In-flight Icing Hazard Verification with NASA's Icing Remote Sensing System for Development of a NEXRAD Icing Hazard Level Algorithm

2011-06-13
2011-38-0030
From November 2010 until May of 2011, NASA's Icing Remote Sensing System was positioned at Platteville, Colorado between the National Science Foundation's S-Pol radar and Colorado State University's CHILL radar (collectively known as FRONT, or ‘Front Range Observational Network Testbed’). This location was also underneath the flight-path of aircraft arriving and departing from Denver's International Airport, which allowed for comparison to pilot reports of in-flight icing. This work outlines how the NASA Icing Remote Sensing System's derived liquid water content and in-flight icing hazard profiles can be used to provide in-flight icing verification and validation during icing and non-icing scenarios with the purpose of comparing these times to profiles of polarized moment data from the two nearby research radars.
Technical Paper

A Freezing Fog/Drizzle Event during the FRAM-S Project

2011-06-13
2011-38-0028
The objective of this work is to better understand freezing fog/drizzle conditions using observations collected during the Fog Remote Sensing and Modeling project (FRAM-S) that took place at St. John's International Airport, St. John's, NL, Canada. This location was ~1 km away from the Atlantic Ocean coast. During the project, the following measurements at one minute resolution were collected: precipitation rate (PR) and amount, fog/drizzle microphysics, 3D wind speed (Uh) and turbulence (Uh'), visibility (Vis), IR and SW radiative fluxes, temperature (T) and relative humidity (RH), and aerosol observations. The reflectivity and microphysical parameters obtained from the Metek Inc. MRR (Microwave Rain Radar) were also used in the analysis. The measurements were then used to obtain freezing fog/drizzle microphysical characteristics and their relation to visibility.
Technical Paper

M.I.T. Stirling-Cycle Heat Transfer Apparatus

1992-08-03
929465
The paper describes the design and construction of a two cylinder apparatus to measure heat transfer under conditions of oscillating pressure and oscillating flow such as found in Stirling-cycle machines. The apparatus consists of two large single stage air compressors joined by a rigid drive shaft between the two crank shafts. The compressors are 27.94 cm (11-in) diameter by 22.86 cm (9-in) stroke. The apparatus is powered by a 25 HP variable speed DC motor. Belts and a jack shaft provide wide speed ranges. The test section, which is connected between the compressor cylinders, is a 44.45 mm (1.75-in) diameter tube and about 254 cm (100-in) long. The test section is configured for measuring wall heat flux, and gas pressure as a function of time. An LDV system is being installed for measurement of gas velocity as a function of time and position. A fast response micro thermocouple measures gas temperature as a function of time and position.
Technical Paper

Flame Shape Determination Using an Optical-Fiber Spark Plug and a Head-Gasket Ionization Probe

1994-10-01
941987
A method for determining the flame contour based on the flame arrival time at the fiber optic (FO) spark plug and at the head gasket ionization probe (IP) locations has been developed. The experimental data were generated in a single-cylinder Ricardo Hydra spark-ignition engine. The head gasket IP, constructed from a double-sided copper-clad circuit board, detects the flame arrival time at eight equally spaced locations at the top of the cylinder liner. Three other IP's were also installed in the cylinder head to provide additional intermediate data on flame location and arrival time. The FO spark plug consists of a standard spark plug with eight symmetrically spaced optical fibers located in the ground casing of the plug. The cylinder pressure was recorded simultaneously with the eleven IP signals and the eight optical signals using a high-speed PC-based data acquisition system.
Technical Paper

Ground-Based and Airborne Remote Sensing of Inflight Aircraft Icing Conditions

2000-04-11
2000-01-2112
NASA, the FAA, DoD, and NOAA have teamed with industry and academia to develop a capability to detect icing conditions ahead of aircraft using onboard or ground-based remote sensing systems. The goal of the program is to provide pilots with sufficient information to allow avoidance of icing. Information displayed to the pilot, as a measure of icing potential, will be useful in assessing the risk of entering the sensed conditions. This requires measurement and mapping of cloud microphysical parameters, especially cloud and precipitation liquid water content, droplet size and temperature, with range. Remote measurement of cloud microphysical conditions has been studied for years. However, this is the largest focused program devoted to remotely detect aircraft icing conditions. Primary funding sources are NASA Aerospace Operations Systems, the FAA Aviation Weather Research Program and William J.
Technical Paper

Additional Large-Drop Ice Accretion Test Results for a Large Scale Swept Wing Section from January 2022

2023-06-15
2023-01-1382
In-flight icing is an important consideration that affects aircraft design, performance, certification and safety. Newer regulations combined with increasing demand to reduce fuel burn, emissions and noise are driving a need for improvements in icing simulation capability. To that end, this paper presents the results of additional ice accretion testing conducted in the NASA Icing Research Tunnel in January 2022 with a large swept wing section typical of a modern commercial transport. The model was based upon a section of the Common Research Model wing at the 64% semispan station with a streamwise chord length of 136 in. The test conditions were developed with an icing scaling analysis to generate similar conditions for a small median volumetric diameter (MVD) = 25 μm cloud and a large MVD = 110 μm cloud. A series of tests were conducted over a range of total temperature from -23.8 °C to -1.4 °C with all other conditions held constant.
Technical Paper

Aircraft In Situ Validation of Hydrometeors and Icing Conditions Inferred by Ground-based NEXRAD Polarimetric Radar

2015-06-15
2015-01-2152
MIT Lincoln Laboratory is tasked by the U.S. Federal Aviation Administration to investigate the use of the NEXRAD polarimetric radars* for the remote sensing of icing conditions hazardous to aircraft. A critical aspect of the investigation concerns validation that has relied upon commercial airline icing pilot reports and a dedicated campaign of in situ flights in winter storms. During the month of February in 2012 and 2013, the Convair-580 aircraft operated by the National Research Council of Canada was used for in situ validation of snowstorm characteristics under simultaneous observation by NEXRAD radars in Cleveland, Ohio and Buffalo, New York. The most anisotropic and easily distinguished winter targets to dual pol radar are ice crystals.
Technical Paper

Freezing Fog and Drizzle Observations

2015-06-15
2015-01-2113
Fog and drizzle observations collected during the arctic weather and SAR (Search and Rescue) operations (SAAWSO) project at sub-freezing temperatures (T) are analyzed in this study to identify icing conditions, improve ground-based in-situ and remote sensing observations, and develop icing parameterizations for numerical weather prediction (NWP) models. The SAAWSO project took place during the 2012-2013 winter conditions that occurred over St. John's, NFL, Canada. Observations were obtained by a Droplet Measuring Technologies Fog Measuring Device (FMD), a ground cloud imaging probe (GCIP), a Radiometrics Profiling Microwave Radiometer (PMWR), a Rosemount icing detector, a laser disdrometer, and surface meteorological sensors. Precipitation, wind, and radiation data were also collected. Results suggest that observations obtained from integrated in-situ and remote sensors can be used to characterize icing conditions.
Technical Paper

Optimization of the IC Engine Piston Skirt Design Via Neural Network Surrogate and Genetic Algorithms

2024-04-09
2024-01-2603
Internal combustion (IC) engines still power most of the vehicles on road and will likely to remain so in the near future, especially for heavy duty applications in which electrification is typically more challenging. Therefore, continued improvements on IC engines in terms of efficiency and longevity are necessary for a more sustainable transportation sector. Two important design objectives for heavy duty engines with wet liners are to reduce friction loss and to lower the risks of cavitation damages, both of which can be greatly influenced by the piston-liner clearance and the design of the piston skirt. However, engine design optimization is difficult due to the nonlinear interactions between the key design variables and the design objectives, as well as the multi-physics and multi-scale nature of the mechanisms that are relevant to the design objectives.
X