Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

AHSS Shear Fracture Predictions Based on a Recently Developed Fracture Criterion

2010-04-12
2010-01-0988
One of the issues in stamping of advanced high strength steels (AHSS) is the stretch bending fracture on a sharp radius (commonly referred to as shear fracture). Shear fracture typically occurs at a strain level below the conventional forming limit curve (FLC). Therefore it is difficult to predict in computer simulations using the FLC as the failure criterion. A modified Mohr-Coulomb (M-C) fracture criterion has been developed to predict shear fracture. The model parameters for several AHSS have been calibrated using various tests including the butter-fly shaped shear test. In this paper, validation simulations are conducted using the modified (M-C) fracture criterion for a dual phase (DP) 780 steel to predict fracture in the stretch forming simulator (SFS) test and the bending under tension (BUT) test. Various deformation fracture modes are analyzed, and the range of usability of the criterion is identified.
Technical Paper

A Numerical Model for Piston Pin Lubrication in Internal Combustion Engines

2020-09-15
2020-01-2228
As the piston pin works under significant mechanical load, it is susceptible to wear, seizure, and structural failure, especially in heavy duty internal combustion engines. It has been found that the friction loss associated with the pin is comparable to that of the piston, and can be reduced when the interface geometry is properly modified. However, the mechanism that leads to such friction reduction, as well as the approaches towards further improvement, remain unknown. This work develops a piston pin lubrication model capable of simulating the interaction between the pin, the piston, and the connecting rod. The model integrates dynamics, solid contact, oil transport, and lubrication theory, and applies an efficient numerical scheme with second order accuracy to solve the highly stiff equations. As a first approach, the current model assumes every component to be rigid.
Journal Article

Identification of True Stress-Strain Curve of Thermoplastic Polymers under Biaxial Tension

2016-04-05
2016-01-0514
This article is concerned with identification of true stress-strain curve under biaxial tension of thermoplastic polymers. A new type of biaxial tension attachment was embedded first in a universal material test machine, which is able to transform unidirectional loading of the test machine to biaxial loading on the specimen with constant velocity. Cruciform specimen geometry was optimized via FE modeling. Three methods of calculating true stress in biaxial tension tests were compared, based on incompressibility assumption, linear elastic theory and inverse engineering method, respectively. The inverse engineering method is more appropriate for thermoplastic polymers since it considers the practical volume change of the material during biaxial tension deformation. The strategy of data processing was established to obtain biaxial tension true stress-strain curves of different thermoplastic polymers.
Journal Article

A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet

2008-04-14
2008-01-0459
This paper quantifies the potential of electric propulsion systems to reduce petroleum use and greenhouse gas (GHG) emissions in the 2030 U.S. light-duty vehicle fleet. The propulsion systems under consideration include gasoline hybrid-electric vehicles (HEVs), plug-in hybrid vehicles (PHEVs), fuel-cell hybrid vehicles (FCVs), and battery-electric vehicles (BEVs). The performance and cost of key enabling technologies were extrapolated over a 25-30 year time horizon. These results were integrated with software simulations to model vehicle performance and tank-to-wheel energy consumption. Well-to-wheel energy and GHG emissions of future vehicle technologies were estimated by integrating the vehicle technology evaluation with assessments of different fuel pathways. The results show that, if vehicle size and performance remain constant at present-day levels, these electric propulsion systems can reduce or eliminate the transport sector's reliance on petroleum.
Journal Article

An Assessment of the Rare Earth Element Content of Conventional and Electric Vehicles

2012-04-16
2012-01-1061
Rare earths are a group of elements whose availability has been of concern due to monopolistic supply conditions and environmentally unsustainable mining practices. To evaluate the risks of rare earths availability to automakers, a first step is to determine raw material content and value in vehicles. This task is challenging because rare earth elements are used in small quantities, in a large number of components, and by suppliers far upstream in the supply chain. For this work, data on rare earth content reported by vehicle parts suppliers was assessed to estimate the rare earth usage of a typical conventional gasoline engine midsize sedan and a full hybrid sedan. Parts were selected from a large set of reported parts to build a hypothetical typical mid-size sedan. Estimates of rare earth content for vehicles with alternative powertrain and battery technologies were made based on the available parts' data.
Technical Paper

Modeling the Spark Ignition Engine Warm-Up Process to Predict Component Temperatures and Hydrocarbon Emissions

1991-02-01
910302
In order to understand better the operation of spark-ignition engines during the warm-up period, a computer model had been developed which simulates the thermal processes of the engine. This model is based on lumped thermal capacitance methods for the major engine components, as well as the exhaust system. Coolant and oil flows, and their respective heat transfer rates are modeled, as well as friction heat generation relations. Piston-liner heat transfer is calculated based on a thermal resistance method, which includes the effects of piston and ring material and design, oil film thickness, and piston-liner crevice. Piston/liner crevice changes are calculated based on thermal expansion rates and are used in conjunction with a crevice-region unburned hydrocarbon model to predict the contribution to emissions from this source.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Journal Article

Oil Transport from Scraper Ring Step to Liner at Low Engine Speeds and Effect of Dimensions of Scraper Ring Step

2016-04-05
2016-01-0495
In gasoline engines, a scraper ring with a step on the bottom outer edge is widely used as a second ring. However, there lacks a fundamental understanding on the effects of this feature and its dimensions on oil transport. Inspired by observations from visualization experiments, this work combining computational fluid dynamics (CFD) and theoretical analysis shows that oil can be trapped in the space bordered by a second ring step and the chamfer of a piston third land. The trapped oil can be released to a liner when the piston is approaching the top dead center (TDC). This additional oil on the liner becomes a potential source of oil consumption. Such oil transport has been observed at typically less than 1500rpm. Since road vehicles often operate in this speed range, the newly-observed oil trapping and release can be closely associated with oil consumption in gasoline engines. In this work, a comprehensive study on oil trapping and release will be demonstrated.
Technical Paper

Application of Model Fuels to Engine Simulation

2007-07-23
2007-01-1843
To address the growing need for detailed chemistry in engine simulations, new software tools and validated data sets are being developed under an industry-funded consortium involving members from the automotive and fuels industry. The results described here include systematic comparison and validation of detailed chemistry models using a wide range of fundamental experimental data, and the development of software tools that support the use of detailed mechanisms in engineering simulations. Such tools include the automated reduction of reaction mechanisms for targeted simulation conditions. Selected results are presented and discussed.
Technical Paper

The Effects of Sulfated Ash, Phosphorus and Sulfur on Diesel Aftertreatment Systems - A Review

2007-07-23
2007-01-1922
This paper reviews the relevant literature on the effects of sulfated ash, phosphorus, and sulfur on DPF, LNT, and SCR catalysts. Exhaust backpressure increase due to DPF ash accumulation, as well as the rate at which ash is consumed from the sump, were the most studied lubricant-derived DPF effects. Based on several studies, a doubling of backpressure can be estimated to occur within 270,000 to 490,000 km when using a 1.0% sulfated ash oil. Postmortem DPF analysis and exhaust gas measurements revealed that approximately 35% to 65% less ash was lost from the sump than was expected based on bulk oil consumption estimates. Despite significant effects from lubricant sulfur and phosphorus, loss of LNT NOX reduction efficiency is dominated by fuel sulfur effects. Phosphorus has been determined to have a mild poisoning effect on SCR catalysts. The extent of the effect that lubricant phosphorus and sulfur have on DOCs remains unclear, however, it appears to be minor.
Technical Paper

Colorimetric-Solid Phase Extraction Technology for Water Quality Monitoring: Evaluation of C-SPE and Debubbling Methods in Microgravity

2007-07-09
2007-01-3217
Colorimetric-solid phase extraction (C-SPE) is being developed as a method for in-flight monitoring of spacecraft water quality. C-SPE is based on measuring the change in the diffuse reflectance spectrum of indicator disks following exposure to a water sample. Previous microgravity testing has shown that air bubbles suspended in water samples can cause uncertainty in the volume of liquid passed through the disks, leading to errors in the determination of water quality parameter concentrations. We report here the results of a recent series of C-9 microgravity experiments designed to evaluate manual manipulation as a means to collect bubble-free water samples of specified volumes from water sample bags containing up to 47% air. The effectiveness of manual manipulation was verified by comparing the results from C-SPE analyses of silver(I) and iodine performed in-flight using samples collected and debubbled in microgravity to those performed on-ground using bubble-free samples.
Technical Paper

International Space Station Temperature and Humidity Control Subsystem Verification for Node 1

2007-07-09
2007-01-3185
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 THC subsystem design. The paper will also provide a discussion of the detailed Element Verification methodologies for nominal operation of the Node 1 THC subsystem operations utilized during the Qualification phase.
Technical Paper

International Space Station Atmosphere Control and Supply, Atmosphere Revitalization, and Water Recovery and Management Subsystem - Verification for Node 1

2007-07-09
2007-01-3102
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 ACS, AR, and WRM design and detailed Element Verification methodologies utilized during the Qualification phase for Node 1.
Technical Paper

The Mars Gravity Biosatellite: Thermal Design Strategies for a Rotating Partial Gravity Spacecraft

2007-07-09
2007-01-3078
A rotating spacecraft which encloses an atmospheric pressure vessel poses unique challenges for thermal control. In any given location, the artificial gravity vector is directed from the center to the periphery of the vehicle. Its local magnitude is determined by the mathematics of centripetal acceleration and is directly proportional to the radius at which the measurement is taken. Accordingly, we have a system with cylindrical symmetry, featuring microgravity at its core and increasingly strong gravity toward the periphery. The tendency for heat to move by convection toward the center of the craft is one consequence which must be addressed. In addition, fluid flow and thermal transfer is markedly different in this unique environment. Our strategy for thermal control represents a novel approach to address these constraints. We present data to theoretically and experimentally justify design decisions behind the Mars Gravity Biosatellite's proposed payload thermal control subassembly.
Technical Paper

Engine Wear Modeling with Sensitivity to Lubricant Chemistry: A Theoretical Framework

2007-04-16
2007-01-1566
The life of an automotive engine is often limited by the ability of its components to resist wear. Zinc dialkyldithiophosphate (ZDDP) is an engine oil additive that reduces wear in an engine by forming solid antiwear films at points of moving contact. The effects of this additive are fairly well understood, but there is little theory behind the kinetics of antiwear film formation and removal. This lack of dynamic modeling makes it difficult to predict the effects of wear at the design stage for an engine component or a lubricant formulation. The purpose of this discussion is to develop a framework for modeling the formation and evolution of ZDDP antiwear films based on the relevant chemical pathways and physical mechanisms at work.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

The Lunar-Mars Life Support Test Project Phase III 90-day Test: The Crew Perspective

1998-07-13
981702
The Lunar-Mars Life Support Test Project (LMLSTP) Phase III test examined the use of biological and physicochemical life support technologies for the recovery of potable water from waste water, the regeneration of breathable air, and the maintenance of a shirt-sleeve environment for a crew of four persons for 91 days. This represents the longest duration ground-test of life support systems with humans performed in the United States. This paper will describe the test from the inside viewpoint, concentrating on three major areas: maintenance and repair of life support elements, the scientific projects performed primarily in support of the International Space Station, and numerous activities in the areas of public affairs and education outreach.
Technical Paper

Derivation of Boundary Manikins: A Principal Component Analysis

2008-06-17
2008-01-1879
When designing any human-system interface, it is critical to provide realistic anthropometry to properly represent how a person fits within a given space. This study aimed to identify a minimum number of ‘boundary manikins’ or representative models of subjects' anthropometry from a target population, which would realistically represent the population. The boundary manikin anthropometry was derived using, Principal Component Analysis (PCA). PCA is a statistical approach to reduce a multi-dimensional dataset using eigenvectors and eigenvalues. The measurements used in the PCA were identified as those measurements critical for space suit and cockpit design. The PCA yielded a total of 26 manikins per gender, as well as their anthropometry from the target population. Reduction techniques were implemented to reduce this number further with a final result of 20 female and 22 male subjects.
Technical Paper

International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Water Recovery and Management Subsystems

2008-06-29
2008-01-2183
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 ECLS WRM subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for that subsystem.
X