Refine Your Search

Topic

Author

Search Results

Technical Paper

Spacelab Neurovestibular Hardware

1991-07-01
911566
A set of devices for measurement of human balance orientation and eye movements in weightlessness was developed for neurovestibular experiments on Spacelab. The experiments involve astronaut motion, limb position changes, and moving visual fields, measurements are made of eye movements, muscular activity and orientation perception. This joint US/Canadian research program represent a group of closely related experiments designed to investigate space motion sickness, any associated changes in otolith-mediated responses occurring during weightlessness, and the continuation of changes to postflight conditions. The otoliths are a component of the vestibular apparatus which is located in the middle ear. It is responsible for maintaining the body's balance. Gravitational pull on the otoliths causes them to constantly appraise the nervous system of the position of the head with respect to the direction of gravity.
Technical Paper

Options for Transpiration Water Removal in a Crop Growth System Under Zero Gravity Conditions

1991-07-01
911423
The operation of a crop growth system in micro-gravity is an important part of the National Aeronautics and Space Administration's Closed Ecological Life Support System development program. Maintaining densely arrayed plants in a closed environment imposed to induce high growth rates must be expected to result in substantial levels of water transpiration rate. Since the environmental air is recirculated, the transpiration water must be removed. In an operating CELSS, it is expected that this water will provide potable water for use of the crew. There is already considerable knowledge about water removal from crew environmental air during orbital and transfer activities, and the difference between the conditions of the described requirement and the conditions for which experience has been gained is the quantities involved and the reliability implications due to the required periods of operation.
Technical Paper

The Mars Gravity Biosatellite: Atmospheric Reconditioning Strategies for Extended-Duration Rodent Life Support

2007-07-09
2007-01-3224
We present results which verify the design parameters and suggest performance capabilities/limitations of the Mars Gravity Biosatellite's proposed atmospherics control subassembly. Using a combination of benchtop prototype testing and analytic techniques, we derive control requirements for ammonia. Further, we demonstrate the dehumidification performance of our proposed partial gravity condensing heat exchanger. Ammonia production is of particular concern in rodent habitats. The contaminant is released following chemical degradation of liquid waste products. The rate of production is linked to humidity levels and to the design of habitat modules in terms of bedding substrate, air flow rates, choice of structural materials, and other complex factors. Ammonia buildup can rapidly lead to rodent health concerns and can negatively impact scientific return.
Technical Paper

Compaction and Drying in a Low-Volume, Deployable Commode

2007-07-09
2007-01-3264
We present a device for collecting and storing feces in microgravity that is user-friendly yet suitable for spacecraft in which cabin volume and mass are constrained. On Apollo missions, the commode function was served using disposable plastic bags, which proved time-consuming and caused odor problems. On Skylab, the space shuttle, and the International Space Station, toilets have used airflow beneath a seat to control odors and collect feces. We propose to incorporate airflow into a system of self-compacting, self-drying collection and stowage bags, providing the benefits of previous commodes while minimizing mass and volume. Each collection bag consists of an inner layer of hydrophobic membrane that is permeable to air but not liquid or solid waste, an outer layer of impermeable plastic, and a collapsible spacer separating the inner and outer layers. Filled bags are connected to space vacuum, compacting and drying their contents.
Technical Paper

Construction of a Water-Absorbent, Zero-G, Compactor Trash Bag

2007-07-09
2007-01-3262
The initial concepts and construction of a three layered, water-absorbent, zero-G, compactor trash bag will be described. This bag is composed of an inner wicking layer, a middle absorbent layer, and an outer containment layer. The primary properties of the wicking layer are the fast adsorption of any free liquid released within the trash bag and the lateral spreading of this liquid around the interior of the bag. The absorbent layer sequesters and stores the liquid captured by the wicking layer. It need not be as fast acting as the wicking layer, but has to have a much larger capacity. The containment layer allows for handling of the bag without worry of releasing the contents. The combined strength of the three layers needs to be sufficient to withstand the forces exerted by the compactor.
Technical Paper

Mars Transit Life Support

2007-07-09
2007-01-3160
This paper considers the design of a life support system for transit to Mars and return to Earth. Because of the extremely high cost of launching mass to Mars, the Mars transit life support system must minimize the amount of oxygen, water, and food transported. The three basic ways to provide life support are to directly supply all oxygen and water, or to recycle them using physicochemical equipment, or to produce them incidentally while growing food using crop plants. Comparing the costs of these three approaches shows that physicochemical recycling of oxygen and water is least costly for a Mars transit mission. The long mission duration also requires that the Mars transit life support system have high reliability and maintainability. Mars transit life support cannot make use of planetary resources or gravity. It should be tested in space on the International Space Station (ISS).
Technical Paper

Development of a Pilot Scale Apparatus for Control of Solid Waste Using Low Temperature Oxidation

2007-07-09
2007-01-3135
In February 2004 NASA released “The Vision for Space Exploration.” The important goals outlined in this document include extending human presence in the solar system culminating in the exploration of Mars. Unprocessed waste poses a biological hazard to crew health and morale. The waste processing methods currently under consideration include incineration, microbial oxidation, pyrolysis and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this project is to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. In the Phase I project, TDA Research, Inc. demonstrated the potential of a low temperature oxidation process using ozone. In the current Phase II project, TDA and NASA Ames Research Center are developing a pilot scale low temperature ozone oxidation system.
Technical Paper

The Mars Gravity Biosatellite: Thermal Design Strategies for a Rotating Partial Gravity Spacecraft

2007-07-09
2007-01-3078
A rotating spacecraft which encloses an atmospheric pressure vessel poses unique challenges for thermal control. In any given location, the artificial gravity vector is directed from the center to the periphery of the vehicle. Its local magnitude is determined by the mathematics of centripetal acceleration and is directly proportional to the radius at which the measurement is taken. Accordingly, we have a system with cylindrical symmetry, featuring microgravity at its core and increasingly strong gravity toward the periphery. The tendency for heat to move by convection toward the center of the craft is one consequence which must be addressed. In addition, fluid flow and thermal transfer is markedly different in this unique environment. Our strategy for thermal control represents a novel approach to address these constraints. We present data to theoretically and experimentally justify design decisions behind the Mars Gravity Biosatellite's proposed payload thermal control subassembly.
Technical Paper

Accommodating Rodents During Extended Microgravity Missions

1997-07-01
972306
This study examines the current state of the art in rodent habitats as well as the next generation of rodent habitats currently under development at NASAs Ames Research Center. Space Shuttle missions are currently limited in duration to just over two weeks. In contrast to this, future life science missions aboard the Space Station may last months or even years. This will make resource conservation and utilization critical issues in the development of rodent habitats for extended microgravity missions. Emphasis is placed on defining rodent requirements for extended space flights of up to 90 days, and on improving habitability and extending the useful performance life of rodent habitats.
Technical Paper

Development of the Standard Interface Glovebox (SIGB) for use on Shuttle, MIR, and International Space Station

1997-07-01
972310
An innovative design that meets both Shuttle and Space Station requirements for a user-friendly, volume-efficient, portable glovebox system has been developed at Ames Research Center (ARC). The Standard Interface Glovebox (SIGB) has been designed as a two Middeck locker-sized system that mounts in a Middeck Rack Structure (MRS) or in any rack using the Standard Interface Rack (SIR) rail spacing. The MRS provides structural support for the SIGB during all aspects of the mission and is an interface consistent with NASA's desire for commonality of mechanical interfaces, allowing the SIGB to be flown on essentially any manned space platform. The SIGB provides an enclosed work volume which operates at negative pressure relative to ambient, as well as excellent lighting and ample work volume for anticipated life sciences-related experiment operations inflight.
Technical Paper

Steady-State System Mass Balance for the BIO-Plex

1998-07-13
981747
A steady-state system mass balance calculation was performed to investigate design issues regarding the storage and/or processing of solid waste. In the initial stages of BIO-Plex, only a certain percentage of the food requirement will be satisfied through crop growth. Since some food will be supplied to the system, an equivalent amount of waste will accumulate somewhere in the system. It is a system design choice as to where the mass should accumulate in the system. Here we consider two approaches. One is to let solid waste accumulate in order to reduce the amount of material processing that is needed. The second is to process all of the solid waste to reduce solid waste storage and then either resupply oxygen or add physical/chemical (P/C) processors to recover oxygen from the excess carbon dioxide and water that is produced by the solid waste processor.
Technical Paper

Mass Transport in a Spaceflight Plant Growth Chamber

1998-07-13
981553
The Plant Generic BioProcessing Apparatus (PGBA), a plant growth facility developed for commercial space biotechnology research, has flown successfully on 3 spaceflight missions for 4, 10 and 16 days. The environmental control systems of this plant growth chamber (28 liter/0.075 m2) provide atmospheric, thermal, and humidity control, as well as lighting and nutrient supply. Typical performance profiles of water transpiration and dehumidification, carbon dioxide absorption (photosynthesis) and respiration rates in the PGBA unit (on orbit and ground) are presented. Data were collected on single and mixed crops. Design options and considerations for the different sub-systems are compared with those of similar hardware.
Technical Paper

Development of a Reduced Gravity Test Rig for Waste Management

2008-06-29
2008-01-2049
The space environment presents many challenges to the operation and functioning of life support systems. These challenges include reduced gravity, near vacuum ambient, extreme temperatures, and radiation. Proper testing and modeling of system components to account for these factors will be important for their verification. This paper describes the modeling and design of a reduced gravity test rig for waste management studies. The first investigation planned relate to the functioning of components of the Flexible Membrane Commode (FMC) currently under development at NASA Ames Research Center. The planned reduced gravity tests will be carried out in NASA's C'9 aircraft which provides approximately 25 seconds of reduced gravity per parabolic trajectory. The filling of the commode bag under the influence of a directed air flow will be studied. Simulated waste will be injected and cabin air will be used for directing the waste into the bag.
Technical Paper

Development Status of a Low-Power CO2 Removal and Compression System for Closed-Loop Air Revitalization

2008-06-29
2008-01-2095
The “low power-CO2 removal (LPCOR) system” is an advanced air revitalization system that is under development at NASA Ames Research Center. The LPCOR utilizes the fundamental design features of the ‘four bed molecular sieve’ (4BMS) CO2 removal technology of the International Space Station (ISS). LPCOR improves power efficiency by replacing the desiccant beds of the 4BMS with a membrane dryer and a state-of-the-art, structured adsorbent device that collectively require 25% of the thermal energy required by the 4BMS desiccant beds for regeneration. Compared to the 4BMS technology, it has the added functionality to deliver pure, compressed CO2 for oxygen recovery. The CO2 removal and recovery functions are performed in a two-stage adsorption compressor. CO2 is removed from the cabin air and partially compressed in the first stage. The second stage performs further compression and delivers the compressed CO2 to a reduction unit such as a Sabatier reactor for oxygen recovery.
Technical Paper

Evaluation of Commercial Off-the-Shelf Ammonia Sorbents and Carbon Monoxide Oxidation Catalysts

2008-06-29
2008-01-2097
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
Technical Paper

Lunar Base Life Support Failure Analysis and Simulation

2009-07-12
2009-01-2482
Dynamic simulation of the lunar outpost habitat life support was undertaken to investigate the impact of life support failures and to investigate possible responses. Some preparatory static analysis for the Lunar Outpost life support model, an earlier version of the model, and an investigation into the impact of Extravehicular Activity (EVA) were reported previously. (Jones, 2008-01-2184, 2008-01-2017) The earlier model was modified to include possible resupply delays, power failures, recycling system failures, and atmosphere and other material storage failures. Most failures impact the lunar outpost water balance and can be mitigated by reducing water usage. Food solids and nitrogen can be obtained only by resupply from Earth. The most time urgent failure is a loss of carbon dioxide removal capability. Life support failures might be survivable if effective operational solutions are provided in the system design.
Technical Paper

Fecal Simulant Delivery Systems for Parabolic Flight Testing of the Flexible Membrane Commode

2009-07-12
2009-01-2343
The Flexible Membrane Commode (FMC) is an alternative waste management system designed to address the severe mass restrictions on the Orion vehicle. The concept includes a deployable seat and single use, three layer bags that employ air flow to draw solids away from the body and safely contain them in disposable bags.1 Simulated microgravity testing of the system was performed during two separate parabolic flight campaigns in July and August of 2008. Experimental objectives included verifying the waste fill procedures in reduced gravity, characterizing waste behavior during the filling process, and comparison of the results with model predictions. In addition the operational procedure for bag installation, removal, and sealing were assessed. 2 A difficult operational requirement concerns the delivery of the fecal waste simulant into the upper area of the bag in a manner that faithfully simulates human defecation.
Technical Paper

Results and Analysis from Reduced Gravity Experiments of the Flexible Membrane Commode Apparatus

2009-07-12
2009-01-2344
Two separate experimental rigs used in tests on NASA and Zero-G Corporation aircrafts flying low-gravity trajectories, and in the NASA 2.2 Second Drop Tower have been developed to test the functioning of the Flexible Membrane Commode (FMC) concept under reduced gravity conditions. The first rig incorporates the flexible, optically opaque membrane bag and the second rig incorporates a transparent chamber with a funnel assembly for evacuation that approximates the size of the membrane bag. Different waste dispensers have been used including a caulking gun and flexible hose assembly, and an injection syringe. Waste separation mechanisms include a pair of wire cutters, an iris mechanism, as well as discrete slug injection. The experimental work is described in a companion paper. This paper focuses on the obtained results and analysis of the data.
Technical Paper

A Pilot Scale System for Low Temperature Solid Waste Oxidation and Recovery of Water

2009-07-12
2009-01-2365
In February 2004 NASA released “The Vision for Space Exploration.” The goals outlined in this document include extending the human presence in the solar system, culminating in the exploration of Mars. A key requirement for this effort is to identify a safe and effective method to process waste. Methods currently under consideration include incineration, microbial oxidation, pyrolysis, drying, and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this work was to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. TDA and NASA Ames Research Center have developed a pilot scale low temperature ozone oxidation system to convert organic waste to CO2 and H2O.
Technical Paper

Future Light-Duty Vehicles: Predicting their Fuel Consumption and Carbon-Reduction Potential

2001-03-05
2001-01-1081
The transportation sector in the United States is a major contributor to global energy consumption and carbon dioxide emission. To assess the future potentials of different technologies in addressing these two issues, we used a family of simulation programs to predict fuel consumption for passenger cars in 2020. The selected technology combinations that have good market potential and could be in mass production include: advanced gasoline and diesel internal combustion engine vehicles with automatically-shifting clutched transmissions, gasoline, diesel, and compressed natural gas hybrid electric vehicles with continuously variable transmissions, direct hydrogen, gasoline and methanol reformer fuel cell hybrid electric vehicles with direct ratio drive, and battery electric vehicle with direct ratio drive.
X