Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
Journal Article

An Assessment of the Rare Earth Element Content of Conventional and Electric Vehicles

2012-04-16
2012-01-1061
Rare earths are a group of elements whose availability has been of concern due to monopolistic supply conditions and environmentally unsustainable mining practices. To evaluate the risks of rare earths availability to automakers, a first step is to determine raw material content and value in vehicles. This task is challenging because rare earth elements are used in small quantities, in a large number of components, and by suppliers far upstream in the supply chain. For this work, data on rare earth content reported by vehicle parts suppliers was assessed to estimate the rare earth usage of a typical conventional gasoline engine midsize sedan and a full hybrid sedan. Parts were selected from a large set of reported parts to build a hypothetical typical mid-size sedan. Estimates of rare earth content for vehicles with alternative powertrain and battery technologies were made based on the available parts' data.
Technical Paper

Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

2007-07-09
2007-01-3036
The Vapor Phase Catalytic Ammonia Removal (VPCAR) technology has been previously discussed as a viable option for the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test of the system. Personnel at the Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test Facility.
Technical Paper

Breakeven Mission Durations for Physicochemical Recycling to Replace Direct Supply Life Support

2007-07-09
2007-01-3221
The least expensive life support for brief human missions is direct supply of all water and oxygen from Earth without any recycling. The currently most advanced human life support system was designed for the International Space Station (ISS) and will use physicochemical systems to recycle water and oxygen. This paper compares physicochemical to direct supply air and water life support systems using Equivalent Mass (EM). EM breakeven dates and EM ratios show that physicochemical systems are more cost effective for longer mission durations.
Technical Paper

Compaction and Drying in a Low-Volume, Deployable Commode

2007-07-09
2007-01-3264
We present a device for collecting and storing feces in microgravity that is user-friendly yet suitable for spacecraft in which cabin volume and mass are constrained. On Apollo missions, the commode function was served using disposable plastic bags, which proved time-consuming and caused odor problems. On Skylab, the space shuttle, and the International Space Station, toilets have used airflow beneath a seat to control odors and collect feces. We propose to incorporate airflow into a system of self-compacting, self-drying collection and stowage bags, providing the benefits of previous commodes while minimizing mass and volume. Each collection bag consists of an inner layer of hydrophobic membrane that is permeable to air but not liquid or solid waste, an outer layer of impermeable plastic, and a collapsible spacer separating the inner and outer layers. Filled bags are connected to space vacuum, compacting and drying their contents.
Technical Paper

Mars Transit Life Support

2007-07-09
2007-01-3160
This paper considers the design of a life support system for transit to Mars and return to Earth. Because of the extremely high cost of launching mass to Mars, the Mars transit life support system must minimize the amount of oxygen, water, and food transported. The three basic ways to provide life support are to directly supply all oxygen and water, or to recycle them using physicochemical equipment, or to produce them incidentally while growing food using crop plants. Comparing the costs of these three approaches shows that physicochemical recycling of oxygen and water is least costly for a Mars transit mission. The long mission duration also requires that the Mars transit life support system have high reliability and maintainability. Mars transit life support cannot make use of planetary resources or gravity. It should be tested in space on the International Space Station (ISS).
Technical Paper

The Mars Gravity Biosatellite: Thermal Design Strategies for a Rotating Partial Gravity Spacecraft

2007-07-09
2007-01-3078
A rotating spacecraft which encloses an atmospheric pressure vessel poses unique challenges for thermal control. In any given location, the artificial gravity vector is directed from the center to the periphery of the vehicle. Its local magnitude is determined by the mathematics of centripetal acceleration and is directly proportional to the radius at which the measurement is taken. Accordingly, we have a system with cylindrical symmetry, featuring microgravity at its core and increasingly strong gravity toward the periphery. The tendency for heat to move by convection toward the center of the craft is one consequence which must be addressed. In addition, fluid flow and thermal transfer is markedly different in this unique environment. Our strategy for thermal control represents a novel approach to address these constraints. We present data to theoretically and experimentally justify design decisions behind the Mars Gravity Biosatellite's proposed payload thermal control subassembly.
Technical Paper

Idealized Modeling and Analysis of the Shuttle Orbiter Wing Leading Edge Impact Data

2007-09-17
2007-01-3882
Some selected segments of the ascent and the on-orbit data from the Space Shuttle flight, STS114, as well as some selected laboratory test article data have been analyzed using wavelets, power spectrum and autocorrelation function. Additionally, a simple approximate noise test was performed on these data segments to confirm the presence or absence of white noise behavior in the data. This study was initially directed at characterizing the on-orbit background against which a signature due to an impact during on-orbit operation could be identified. The laboratory data analyzed here mimic low velocity impact that the Orbiter may be subjected to during the very initial stages of ascent.
Technical Paper

Development of Insect Habitat System for Studying Long Duration Circadian Rhythm Changes on Mir Space Station

1997-07-01
972311
A habitat for housing up to 32 Tenebrionid, black body beetles (Trigonoscelis gigas Reitter) has been developed at Ames Research Center for conducting studies to evaluate the effects of long duration spaceflight upon insect circadian timing systems. This habitat, identified as the Beetle Kit, provides an automatically controlled lighting system and activity and temperature recording devices, as well as individual beetle enclosures. Each of the 32 enclosures in a Beetle Kit allows for ad lib movement of the beetle as well as ventilation of the beetle enclosure via an externally operated hand pump. Two Beetle Kits were launched on STS-84 (Shuttle-Mir Mission-06) on May 15, 1997 and were transferred to the Priroda module of the Russian Mir space station on May 18 as part of the NASA/Mir Phase 1 Science Program. Following the Progress collision with Spektr on June 25, the Kits were transferred to the Kristall module. The beetles will remain on Mir for approximately 135 days.
Technical Paper

Accommodating Rodents During Extended Microgravity Missions

1997-07-01
972306
This study examines the current state of the art in rodent habitats as well as the next generation of rodent habitats currently under development at NASAs Ames Research Center. Space Shuttle missions are currently limited in duration to just over two weeks. In contrast to this, future life science missions aboard the Space Station may last months or even years. This will make resource conservation and utilization critical issues in the development of rodent habitats for extended microgravity missions. Emphasis is placed on defining rodent requirements for extended space flights of up to 90 days, and on improving habitability and extending the useful performance life of rodent habitats.
Technical Paper

Development of the Standard Interface Glovebox (SIGB) for use on Shuttle, MIR, and International Space Station

1997-07-01
972310
An innovative design that meets both Shuttle and Space Station requirements for a user-friendly, volume-efficient, portable glovebox system has been developed at Ames Research Center (ARC). The Standard Interface Glovebox (SIGB) has been designed as a two Middeck locker-sized system that mounts in a Middeck Rack Structure (MRS) or in any rack using the Standard Interface Rack (SIR) rail spacing. The MRS provides structural support for the SIGB during all aspects of the mission and is an interface consistent with NASA's desire for commonality of mechanical interfaces, allowing the SIGB to be flown on essentially any manned space platform. The SIGB provides an enclosed work volume which operates at negative pressure relative to ambient, as well as excellent lighting and ample work volume for anticipated life sciences-related experiment operations inflight.
Technical Paper

On-Orbit and Ground Performance of the PGBA Plant Growth Facility

1997-07-01
972366
PGBA, a plant growth facility developed for commercial space biotechnology research, successfully grew a total of 50 plants (6 species) during 10 days aboard the Space Shuttle Endeavor (STS-77), and has reflown aboard the Space Shuttle Columbia (STS-83 for 4 days and STS-94 for 16 days) with 55 plants and 10 species. The PGBA life support system provides atmospheric, thermal, and humidity control as well as lighting and nutrient supply in a 33 liter microgravity plant growth chamber. The atmosphere treatment system removes ethylene and other hydrocarbons, actively controls CO2 replenishment, and provides passive O2 control. Temperature and humidity are actively controlled.
Technical Paper

Reproductive Ontogeny of Wheat Grown on the Mir Space Station

1998-07-13
981552
The reproductive ontogeny of ‘Super-Dwarf’ wheat grown on the space station Mir is chronicled from the vegetative phase through flower' development. Changes in the apical meristem associated with transition from the vegetative plhase to floral initiation and development of the reproductive spike were all typical of ‘Super Dwarf’ wheat up to the point of anthesis. Filament elongation, which characteristically occurs just prior to anthesis (during floral development stage 4) and moves the anthers through the stigmatic branches thus facilitating pollination, did not occur in the flowers of spikes grown on Mir. While pollen did form in the anthers, no evidence of pollination or fertilization was observed. Analysis of pollen idlentified abnormalities; the presence of only one nucleus in the pollen as opposed to the normal trinucleate condition is likely an important factor in the sterility observed in wheat grown on Mir.
Technical Paper

An Evaluation of Potential Mars Transit Vehicle Water Treatment Systems

1998-07-13
981538
This paper compares four potential water treatment systems in the context of their applicability to a Mars transit vehicle mission. The systems selected for evaluation are the International Space Station system, a JSC bioreactor-based system, the vapor phase catalytic ammonia removal system, and the direct osmotic concentration system. All systems are evaluated on the basis of their applicability for use in the context of the Mars Reference Mission. Each system is evaluated on the basis of mass equivalency. The results of this analysis indicate that there is effectively no difference between the International Space Station system and the JSC bioreactor configurations. However, the vapor phase catalytic ammonia removal and the direct osmotic concentration systems offer a significantly lower mass equivalency (approximately 1/7 the ISS or bioreactor systems).
Technical Paper

Space Station Lessons Learned from NASA/Mir Fundamental Biology Research Program

1998-07-13
981606
Ames Research Center's Life Sciences Division was responsible for managing the development of fundamental biology flight experiments during the Phase 1 NASA/Mir Science Program. Beginning with astronaut Norm Thagard's historic March, 1995 Soyuz rendezvous with the Mir station and continuing through Andy Thomas' successful return from Mir onboard STS-91 in June, 1998, the NASA/Mir Science Program has provided scientists with unparalleled long duration research opportunities. In addition, the Phase 1 program has yielded many valuable lessons to program and project management personnel who are managing the development of future International Space Station payload elements. This paper summarizes several of the key space station challenges faced and associated lessons learned by the Ames Research Center Fundamental Biology Research Project.
Technical Paper

Making the Case for a Next Generation Automotive Electrical System

1998-10-19
98C006
Introduction of an array of new electrical and electronic features into future vehicles is generating vehicle electrical power requirements that exceed the capabilities of today's 14 volt electrical systems. In the near term (5 to 10 years), the existing 14V system will be marginally capable of supporting the expected additional loads with escalating costs for the associated charging system. However, significant increases in vehicle functional content are expected as future requirements to meet longer-term (beyond 10 years) needs in the areas of emission control, fuel economy, safety, and passenger comfort. A higher voltage electrical system will be required to meet these future requirements. This paper explores the functional needs that will mandate a higher voltage system and the benefits derivable from its implementation.
Technical Paper

Supporting Constellation Mission Training from Crew to Controllers

2008-06-29
2008-01-2106
Training to operate and manage Constellation vehicles, which include a crewed spacecraft and the lunar lander, is an essential part of the Constellation program. This paper discusses the on-going preparations for a Constellation Training Facility (CxTF). CxTF will be compromised of training simulators that will be used, in part, to prepare crew and flight controllers for vehicle operations. Current training simulators are reviewed to identify and outline key CxTF elements, i.e., part-task and full-task trainers. These trainers are further discussed within the context of the Constellation missions.
Technical Paper

Development Status of a Low-Power CO2 Removal and Compression System for Closed-Loop Air Revitalization

2008-06-29
2008-01-2095
The “low power-CO2 removal (LPCOR) system” is an advanced air revitalization system that is under development at NASA Ames Research Center. The LPCOR utilizes the fundamental design features of the ‘four bed molecular sieve’ (4BMS) CO2 removal technology of the International Space Station (ISS). LPCOR improves power efficiency by replacing the desiccant beds of the 4BMS with a membrane dryer and a state-of-the-art, structured adsorbent device that collectively require 25% of the thermal energy required by the 4BMS desiccant beds for regeneration. Compared to the 4BMS technology, it has the added functionality to deliver pure, compressed CO2 for oxygen recovery. The CO2 removal and recovery functions are performed in a two-stage adsorption compressor. CO2 is removed from the cabin air and partially compressed in the first stage. The second stage performs further compression and delivers the compressed CO2 to a reduction unit such as a Sabatier reactor for oxygen recovery.
Technical Paper

Evaluation of Commercial Off-the-Shelf Ammonia Sorbents and Carbon Monoxide Oxidation Catalysts

2008-06-29
2008-01-2097
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
Technical Paper

Assessment of Cognitive Abilities in Simulated Space Ascent Environments

2009-07-12
2009-01-2425
The cognitive abilities of some astronauts are affected during spaceflight. We investigated whether a simulated space flight ascent environment, including vibration and 3.8 Gx ascent forces, would result in cognitive deficits detectable by the WinSCAT test battery. Eleven participants were administered the computerized cognitive test battery, a workload rating questionnaire and a subjective state questionnaire before and after a combination of acceleration plus vibration conditions. The acceleration plus vibration exposure resulted in significant self-reports of physical discomfort but did not significantly affect cognitive test battery scores. We discuss ways in which a cognitive assessment tool could be made more sensitive to subtle cognitive changes relevant to astronaut performance.
X