Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Development of New High Porosity Diesel Particulate Filter for Integrated SCR Technology/Catalyst

2015-04-14
2015-01-1017
Since the implementation of Euro 6 in September 2014, diesel engines are facing another drastic reduction of NOx emission limits from 180 to only 80 mg/km during NEDC and real driving emissions (RDE) are going to be monitored until limit values are enforced from September 2017. Considering also long term CO2 targets of 95 g/km beyond 2020, diesel engines must become cleaner and more efficient. However, there is a tradeoff between NOx and CO2 and, naturally, engine developers choose lower CO2 because NOx can be reduced by additional devices such as EGR or a catalytic converter. Lower CO2 engine calibration, unfortunately, leads to lower exhaust gas temperatures, which delays the activation of the catalytic converter. In order to overcome both problems, higher NOx engine out emission and lower exhaust gas temperatures, new aftertreatment systems will incorporate close-coupled DeNOx systems.
Technical Paper

In-line Hydrocarbon Adsorber for Cold Start Emissions - Part II

1998-02-23
980423
The in-line hydrocarbon (HC) adsorber is a passive after-treatment technology to address cold-start hydrocarbons in automotive engine exhaust gas. A major technical challenge of the in-line HC adsorber is the difference between the HC release temperature of the adsorber and the light-off temperature of the burn-off (BO) Catalyst. We call this phenomenon the “reversed-temperature difference”. To reduce the reversed temperature difference, NGK has proposed a new “In-line HC Adsorber System” which consists of light-off (LO) Catalyst + Barrel Zeolite Adsorber (BZA), with a hole through the center, BO Catalyst and secondary air injection management (SAE 970266). This, our latest paper, describes the evaluation of various adsorbents and the effect of the center hole on the Adsorber BZA. The adsorber system, which had the Adsorber BZA with a 25mm ϕ center hole and adsorbent coated, confirmed 30% lower FTP NMHC emission versus a system with no center hole or adsorbent coating.
Technical Paper

Study on Reliability of Wall-Flow Type Diesel Particulate Filter

2004-03-08
2004-01-0959
In this paper a method of DPF(Diesel Particulate Filter) lifetime estimation against the thermal stress is presented. In the method, experimentally measured material fatigue property and DPF temperature distributions under various conditions including regeneration mode were used to perform FEM stress analyses and the estimation of DPF lifetime and allowable stresses. From the viewpoint of the system design, to prevent DPF damages such as cracks created through thermal stress or melting, controlling the amount of PM accumulation is important. In this study, the pressure difference behavior under each of PM accumulation mode and regeneration mode was investigated experimentally. The experimental results showed different pressure drop behaviors in accumulation and regeneration. DPFs were observed in detail after PM accumulation and during regeneration to discuss mechanisms of the pressure difference behavior.
Technical Paper

Potential of a Low Pressure Drop Filter Concept for Direct Injection Gasoline Engines to Reduce Particulate Number Emission

2012-04-16
2012-01-1241
The automotive industry is currently evaluating the gasoline particulate filter (GPF) as a potential technology to reduce particulate emissions from gasoline direct injection (GDI) engines. In this paper, several GPF design measures which were taken to obtain a filter with lower pressure drop when compared to our previous concept will be presented. Based on engine test bench and vehicle test results, it was determined some soot will accumulate on the GPF walls, resulting in an increase in pressure drop. However, the accumulated soot will be combusted under high temperature and high O₂ concentration conditions. In a typical vehicle application, passive regeneration will likely occur and a cycle of soot accumulation and combustion might be repeated in the actual driving conditions.
Technical Paper

New Particulate Filter Concept to Reduce Particle Number Emissions

2011-04-12
2011-01-0814
Gasoline Direct Injection (GDI) engines achieve better fuel economy but have the drawback of increased Particulate Matter (PM) emissions. As known from diesel engine applications particulate filters are an effective PM reduction device which is expected to be effective for reduction of particulates emitted by GDI engines as well. For this investigation new filter concepts especially designed for GDI applications are proposed. Filtration efficiency, pressure drop and regeneration performance were verified by cold flow bench and engine and chassis dynamometer testing. The experimental data were used to discuss the validity of these new filter design concepts.
Technical Paper

High Porosity DPF Design for Integrated SCR Functions

2012-04-16
2012-01-0843
Diesel engines are more fuel efficient due to their high thermal efficiency, compared to gasoline engines and therefore, have a higher potential to reduce CO2 emissions. Since diesel engines emit higher amounts of Particulate Matter (PM), DPF systems have been introduced. Today, DPF systems have become a standard technology. Nevertheless, with more stringent NOx emission limits and CO2 targets, additional NOx emission control is needed. For high NOx conversion efficiency, SCR catalysts technology shows high potential. Due to higher temperature at the close coupled position and space restrictions, an integrated SCR concept on the DPFs is preferred. A high SCR catalyst loading will be required to have high conversion efficiency over a wide range of engine operations which causes high pressure for conventional DPF materials.
Technical Paper

Development of New High Porosity Diesel Particulate Filter for Integrated SCR Technology/Catalyst

2015-09-01
2015-01-2018
Diesel engines are widely used to reduce CO2 emission due to its higher thermal efficiency over gasoline engines. Considering long term CO2 targets, as well as tighter gas emission, especially NOx, diesel engines must become cleaner and more efficient. However, there is a tradeoff between CO2 and NOx and, naturally, engine developers choose lower CO2 because NOx can be reduced by a catalytic converter, such as a SCR catalyst. Lower CO2 engine calibration, unfortunately, leads to lower exhaust gas temperatures, which delays the activation of the catalytic converter. In order to overcome both problems, higher engine out NOx emission and lower exhaust gas temperatures, close-coupled a diesel particulate filter (DPF) system with integration of SCR catalyst technology is preferred. For SCR catalyst activity, it is known that the catalyst loading amount has an influence on NOx performance, so a high SCR catalyst loading will be required.
X